

# RELATÓRIOS CIENTÍFICOS E TÉCNICOS

# SÉRIE DIGITAL

DISCARDS FROM THE PORTUGUESE BOTTOM OTTER TRAWL OPERATING IN ICES DIVISION 27.9.a (2004-2015)

Ana Cláudia Fernandes, Nuno Prista e Manuela Azevedo



## **RELATÓRIOS CIENTÍFICOS E TÉCNICOS DO IPMA – SÉRIE DIGITAL**

Destinam-se a promover uma divulgação rápida de resultados de carácter científico e técnico, resultantes da actividade de investigação e do desenvolvimento e inovação tecnológica nas áreas de investigação do mar e da atmosfera. Esta publicação é aberta à comunidade científica e aos utentes, podendo os trabalhos serem escritos em Português, Francês ou Inglês.

**Edição** IPMA Rua C – Aeroporto de Lisboa 1749-007 LISBOA Portugal

Corpo Editorial Francisco Ruano – Coordenador Aida Campos Irineu Batista Lourdes Bogalho Mário Mil-Homens Rogélia Martins Teresa Drago

Edição Digital

Anabela Farinha

As instruções aos autores estão disponíveis no sitio web do IPMA <u>http://ipma.pt</u>

ou podem ser solicitadas aos membros do Corpo Editorial desta publicação

**Capa** Conceição Almeida

ISSN

#### 2183-2900

Todos os direitos reservados

# Discards from the Portuguese bottom otter trawl operating in ICES Division 27.9.a (2004-2015)

## Ana Cláudia Fernandes<sup>1</sup>; Nuno Prista<sup>1,2</sup>; Manuela Azevedo<sup>1</sup>

<sup>1</sup>Instituto Português do Mar e da Atmosfera, IPMA I.P., R. Alfredo Magalhães Ramalho, 6 1495-006 Lisboa, Portugal; <sup>2</sup>Institute of Marine Research (SLU Aqua) Swedish University of Agricultural Sciences, Turistgatan,5, 453 30 Lysekil,Sweden

Recebido em: 2017-11-08

Aceite em 2017-11-29

#### ABSTRACT

This document compiles the information available on discards from Portuguese vessels operating with bottom otter trawl (OTB) in the Portuguese ICES Division 27.9.a, estimated by IPMA for the period 2004-2015. These discards include species from the stocks assessed in ICES assessment Working Groups and species commercially important at national level. The samples were collected by the onboard sampling programme of the National Programme for Biological Sampling (PNAB/EU DCF), integrated in the National Data Collection Framework . The onboard sampling programme, estimation algorithms and data quality assurance procedures are described and results for two fisheries provided: the crustacean bottom otter trawl fishery (OTB\_CRU) and the demersal bottom otter trawl fish fishery (OTB\_DEF). Estimates of discard volume and length composition are provided for the 'year, fishery, species' combinations where they are frequently observed ( $\geq 30\%$  of sampled hauls). Results show that although there's a large number of species discarded, the number of species frequently discarded is very low (~7% in OTB\_CRU and ~4% in OTB\_DEF). Mean number of discards per haul is calculated for all species that occurred in discards and analysis of length compositions are displayed for selected species. Analyses of the combined results indicates that a large part of the species selected for this work are either absent in discards or very rarely discarded. Indications are given on possible discarding reasons and on the discard estimation methodology to be developed for less frequent species and for other Portuguese fleet components.

Key words: Species discards, bottom otter trawl, ICES Division 27.9.a

# Título – Devoluções ao mar pela frota de arrasto Portuguesa a operar na Divisão ICES 27.9.a (2004-2015)

#### **RESUMO**

Este documento reúne informação sobre as devoluções ao mar efetuadas pela frota comercial Portuguesa a operar com arrasto de fundo com portas (OTB) na Divisão ICES 27.9.a. As devoluções ao mar foram estimadas pelo IPMA, para as populações de espécies que são avaliadas em grupos de trabalho de avaliação do ICES e espécies comercialmente importantes a nível nacional. As amostras foram recolhidas pela amostragem a bordo da frota comercial, no âmbito do Programa Nacional de Amostragem Biológica (PNAB/EU DCF) entre 2004 e 2015. O plano de amostragem a bordo, os algoritmos de estimação e os procedimentos de verificação da qualidade dos dados são descritos e apresentados os resultados obtidos para as duas frotas de arrasto comercial: pescaria de arrasto de fundo dirigida a crustáceos (OTB CRU) e pescaria de arrasto de fundo dirigida a espécies demersais (OTB\_DEF). As estimativas do volume de devoluções ao mar e de distribuições de comprimentos são estimadas para a combinação ano x pescaria x espécies onde elas são frequentemente observadas ( $\geq 30\%$  nos lances amostrados). Os resultados apresentados mostram que, apesar de existir um elevado número de espécies devolvidas ao mar, o número de espécies frequentemente presente naquela fração da captura é muito baixo (~7% em OTB\_CRU e ~4% em OTB\_DEF). O número médio de devoluções ao mar por lance é calculado para todas as espécies que foram devolvidas ao mar e a análise das distribuições de comprimentos é apresentada. A análise dos resultados indica que grande parte das espécies selecionadas para este estudo, ou não está presente nas devoluções ao mar ou poucas vezes se encontram naquela fração da captura. Por fim, são dadas indicações sobre algumas das razões possíveis para as devoluções ao mar, assim como sobre a metodologia a desenvolver para a sua estimativa nas espécies menos frequentes e de outras componentes de frota da pesca nacional.

Palavras-chave: Devoluções de espécies ao mar, arrasto de fundo com portas, Divisão ICES 27.9.a

**BIBLIOGRAPHIC REFERENCE:** Fernandes, A. C.; Prista N.; Azevedo. M. (2017). Discards from the Portuguese bottom otter trawl operating in ICES Division 27.9.a (2004-2015). *Relat.Cient.Tec. do IPMA* (http://ipma.pt) n°18. 18p + Anexos

#### **1. Introduction**

The objective of the onboard sampling programme is to estimate the composition, volume, lengths and age of catches (landings + discards) taken by the Portuguese bottom otter trawl fleet (OTB) operating in the Portuguese ICES Division 27.9.a. This fleet is generally engaged in mixed-fisheries, where a variety of species contribute to the output of the fishery. These species differ in habitat requirements and in their seasonal migration pattern, hence the species composition of catches will vary in space and time (Poos *et al.*, 2010). Consequently, also discard patterns can be highly variable due to changing economic, environmental and social factors (Catchpole *et al.*, 2005). Knowledge on the retained and discarded catch compositions of a fishery and how these vary spatially, temporally and among different fishing operations is then necessary for identifying the potential impacts of fishing on stocks assessment and ecosystems (Gray *et al.*, 2005).

The present work compiles the information on discards of near 100 taxa (species and groups) caught by the Portuguese bottom otter trawl fleets. Most of the information has been reported to ICES Working Groups (see Annex I for WG acronyms and Annex II, Table 1 for species and groups). The data presented in this work was collected by the onboard sampling programme within National Programme for Biological Sampling (PNAB/EU DCF - CR (EC) 199/2008; CD 2010/93/EU) between 2004 and 2015. The document starts with a description of the onboard sampling programme and sampling design. Then some details of the estimation algorithms and data quality assurance procedures are presented together with results on the annual frequency of occurrence in discards, number of specimens discarded at haul level, and length composition of individuals sampled in discards for the different taxa. Fishery-level estimates of discard volume and length composition are presented for the combinations ('year, fishery, species') where discards were frequently observed. For less frequent species summary tables of the information collected are provided that include both annual discards per haul in number and a statistical summary of total sampled lengths.

#### 2. Onboard sampling programme

The Portuguese onboard sampling design from the National Programme for Biological Sampling (PNAB/EU DCF) is based on a quasi-random sampling of cooperative commercial vessels between 12 and 40 meters length overall. The programme started in late 2003 and comprehends the onboard sampling of several fishing métiers and fleets. These include, amongst other, bottom otter trawl, deep-water set longlines, gill and trammel nets (of various mesh sizes), beam trawl and purse seines. The bottom otter trawl fleet (OTB) is the most comprehensively sampled fleet in Portuguese waters (from late 2003 to date) with two fisheries being considered for sampling purposes: a crustacean fishery that operates cod-end mesh sizes 55-59 mm and  $\geq$ 70 mm targeting deep-water rose shrimp, Norway lobster and blue whiting (OTB\_CRU) and a demersal fish fishery that

operates cod-end mesh size 65-69 mm and  $\geq$ 70 mm and targets horse-mackerel, cephalopods and other finfish (OTB\_DEF). The near totality of vessels operates on only one of the fisheries (either the crustacean or the demersal fish fishery) throughout time as they require different technical setups on the vessels. A detailed account of the characteristics in these fisheries can be found in Castro *et al.* (2007).

#### 2.1 Sampling Design

A brief description of the sampling design follows:

**Population:** Lengths of fish captured by the Portuguese bottom otter trawlers operating in ICES Division 27.9.a.

**Target population:** Lengths of fish captured by the Portuguese bottom trawlers >12 m length overall that operate in ICES Division 27.9.a.

**Study population:** Lengths of fish captured by Portuguese vessels (>18 m) that operate in ICES Division 27.9.a (within species), for each fishery.

**Sampling frame:** List of cooperative vessels for each fleet segment/métier. Stratification type: Spatial – ports (Northwest, Southwest and South); Temporal – quarters.

**Sampling effort:** The number of trips to sample OTB\_CRU and OTB\_DEF was obtained from an initial Neyman allocation which was considered valid for the entire DCF period (OTB\_CRU: 12 trips and OTB\_DEF: 27 trips). Within each fishery, sampling effort distribution in space and time is proportional to effort and landings.

#### Primary/Secondary Sampling Unit (PSU/SSU): Vessel/Trip.

#### 2.2 Description

#### 2.2.1 Trip Selection

Vessel selection for trip sampling is quasi-random from within a set of cooperative vessels (Prista *et al.*, 2013). These cooperative vessels are similar to a reference fleet in that they represent quite well the fishing behavior of the fleet (Azevedo *et al.*, 2014; Fernandes *et al.*, *in prep*). Annual sampling targets are fixed for each fishery, namely 12 trips for OTB\_CRU fishery and 27 trips for OTB\_DEF fishery. Sampling levels attained in the 2004-2015 period are presented in Table 1 where it is noticeable that both fisheries have been extensively sampled throughout the period.

|      | Trips sa | ampled  | Hauls s | ampled  | Fishin  | g Hours |
|------|----------|---------|---------|---------|---------|---------|
| Year | OTB_CRU  | OTB_DEF | OTB_CRU | OTB_DEF | OTB_CRU | OTB_DEF |
| 2004 | 17       | 24      | 111     | 125     | 479     | 315     |
| 2005 | 15       | 39      | 74      | 159     | 372     | 349     |
| 2006 | 7        | 42      | 30      | 194     | 133     | 380     |
| 2007 | 12       | 38      | 73      | 162     | 263     | 296     |
| 2008 | 12       | 34      | 66      | 128     | 267     | 254     |
| 2009 | 16       | 38      | 84      | 135     | 314     | 264     |
| 2010 | 16       | 31      | 103     | 116     | 375     | 208     |
| 2011 | 13       | 30      | 56      | 83      | 317     | 161     |
| 2012 | 13       | 31      | 68      | 60      | 302     | 130     |
| 2013 | 6        | 27      | 28      | 50      | 118     | 108     |
| 2014 | 10       | 24      | 42      | 52      | 167     | 112     |
| 2015 | 13       | 26      | 51      | 48      | 201     | 105     |

**Table 1** - Sampling levels of the Portuguese onboard sampling programme in the two OTBfisheries in ICES Division 27.9.a (2004-2015). "OTB\_CRU" = crustacean fishery, "OTB\_DEF"= demersal fish fishery.

#### 2.2.2 Catch sampling

The sampling protocol used in Portuguese onboard sampling of the OTB fleet is detailed in Jardim *et al.* (2011) and Prista *et al.* (2011). For both fisheries (OTB\_CRU and OTB\_DEF), two observers are deployed per fishing trip. Until 2010 instructions were given to observers to sample as many hauls as possible in the trip. Since 2011, haul selection was made systematically (either odd or even hauls are sampled after a random start). On each selected haul observers take a sample from the catch, sort the specimens into landed/retained<sup>1</sup> and discarded fraction according to crew's criteria and register the weight and length composition. Concurrently, observers also collect auxiliary fishery-related information such as effort (e.g., fishing hours), geographic and environmental data (e.g., GPS coordinates, depth, bottom type). From 2004 to 2010 the onboard sampling protocols have suffered only minor changes and adaptations. In 2011 the size of catch samples was doubled (from 1 to 2 boxes of catch) and the within-trip selection of hauls was standardized to "at least, every other haul".

#### 3. Data archiving & Quality assurance procedure

Data involved in the calculation of discard estimates from Portuguese waters comes from an IPMA database (onboard sampling data) and from the Directorate General for Natural Resources, Safety and Maritime Services, DGRM (logbook, sales and VMS data). The IPMA onboard database is programmed in Oracle and contains internal routines for the detection of basic errors (e.g., errors in dates). In what concerns the OTB fleet, the database contains general trip information (vessel information, date, location, haul number, retained weight by species), along with sample information by

<sup>&</sup>lt;sup>1</sup> For simplicity, "landed fraction" is used as synonym of "retained fraction"

fraction (retained, discarded) and species, namely weight, number of specimens and length composition. Quality checks involving the manual checking of (at least) 10% of annual trawl records have been routinely carried out since the beginning of the onboard sampling programme. In 2010-2011 a semi-automated R quality assurance procedure was designed and the 2004-2011 trawl data base was checked for so far undetected errors, subsequently corrected. Since then, routine quality assurance procedures include: quarterly checks using the semi-automated R routine and an annual check of 10% of the trawl records that detects observer-related biases, with only minor updates and data reviews being performed in the previous data. Fishing effort and commercial data (logbooks and landings statistics) is supplied to IPMA by DGRM on an annual basis. The 2004-2011 logbook data was based on paper logbooks and displayed increasing fleet coverage over time. However, in 2012, DGRM discontinued most of its logging of paper logbooks since these have been progressively replaced by electronic logbooks. Quality checks are also performed to the logbook information in what concerns to consistency and coherence (e.g. fishing days, number of hauls) according to the obtained knowledge on fishing patterns from vessels in each fishery.

#### 3.1 Note on species identification

The Portuguese onboard observers are trained in using the FAO 3-alpha code list (ASFIS List of Species for Fishery Statistics Purposes: available at http://www.fao.org/fishery/collection/asfis/en, date: February 2017) to identify species and species groups during field observations. General training in species identification is provided to observers during demersal surveys, market sampling and on dedicated workshops. When onboard a commercial fishing trip, observers are requested to record fish data at the most appropriate taxonomic level based on the specimen's conservation status, on field logistics (e.g. confined space, lack of time), and their own identification expertise. The practice shows that Portuguese onboard observers are quite accurate in the identification of species assessed by ICES. The FAO 3-alpha codes, scientific and common names of species covered by this working document are near 100 species/groups and are described in Table 1 (Annex II).

#### 4. Data analysis

The procedures used to raise discard data from samples to haul and fleet level, considering each fishery have been previously described in Jardim and Fernandes (2013) and Fernandes *et al.* (2010) following presentations and discussions in dedicated ICES Working Groups (e.g. SGPIDS, WKPICS, WKDRP). A brief account follows.

#### 4.1 Estimates of discards (haul level)

In the OTB fleet the volume of the catch in each haul (C) is estimated as

6

$$C (haul) = WD + WL = \frac{Wd}{Wl} \times WL + WL$$

Where Wd is the weight of discards in the sample, Wl is the weight landed in the sample and WL is the total weight of landings in the haul. The volume of discards of individual species in each haul ( $WD_x(haul)$ ) is calculated:

$$WD_x(haul) = \frac{Wd_x}{Ws} \times C$$

Where  $Wd_x$  is the weight of the discards of species x in the sample, Ws is the weight of the sample and C is the total volume of the catch in the haul.

#### 4.2 Estimates of discards (fleet level)

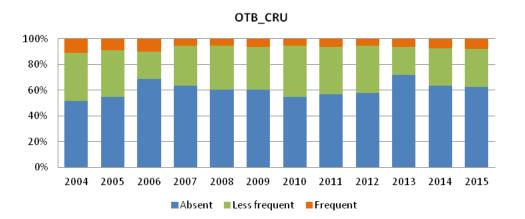
The procedure generally used to raise discards from haul to fleet level in the Portuguese trawl fisheries is presented in Annex III. This procedure relies on haul level discard data (discards per hour) and effort data (fishing hours and fishing trips) derived from logbooks, sales slips and, for 2012-2015 periods, VMS (Vessel Monitoring System) data was also used. The procedure was developed for hake that is a very frequent catch of the Portuguese OTB fisheries (Jardim and Fernandes, 2013). To accurately estimate the discard volume of species with low abundance and low frequency of occurrence in the sampled hauls, a large number of non-zero observations are required. The current fleet-level discard estimation algorithm is considered sensitive to large number of zeros in the data set (Jardim *et al.*, 2011) and discard estimates are deemed not reliable when the frequency of occurrence of species is below 30%. Consequently, annual discard volumes are only routinely obtained for species discarded in  $\geq$ 30% of sampled hauls. The length structure of discards at fleet level is estimated using the same raising methodology as Jardim and Fernandes (2013) but applied to the number of discarded specimens per length class.

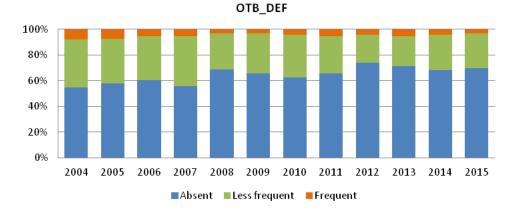
#### 4.3 Number of discarded specimens per species at haul level

The number of individuals discarded per species  $(ND_x)$  is estimated using the same procedure as discard volume.

$$ND_x(haul) = \frac{Nd_x}{Ns} \times C$$

Where  $Nd_x$  is the number of individuals of species x in the discards fraction of the sample, Ns is the weight of the sample and C is the total volume of the catch in the haul. Mean number of specimens discarded per species and haul, including those less frequent, were calculated. For each 'year, fishery' combination, mean values and their standard deviation were calculated alongside maximum and minimum numbers of individuals found in hauls.


#### 4.4 Length frequency of discards


The length composition of species discarded in each fishery (OTB\_CRU and OTB\_DEF) was estimated for the 'year, species' combinations where total discards were calculated (see Section 4.2 and in Annex III). Concerning the less frequent species, the sample information of each fishery was compiled and the number of specimens measured, mean length, precision and range of lengths observed for all period (2004-2015) is given.

#### 5. Species discards

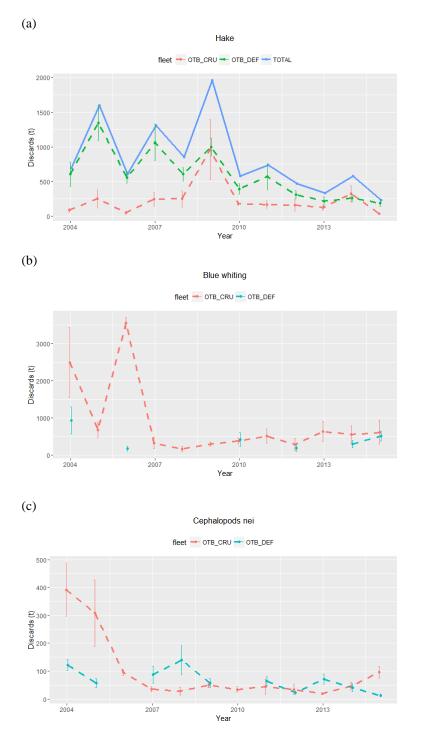
#### 5.1 Frequency of species occurrence

Only a small part of the species routinely reported to ICES assessment are frequently discarded ( $\geq$  30%); most of them are completely absent in sampled hauls for both fisheries (Figure 1). Complete information on the frequency of occurrence of species (taxa) in sampled hauls from OTB\_CRU and OTB\_DEF fisheries is displayed in Tables 2, 3, 4 and 5 (Annex IV)



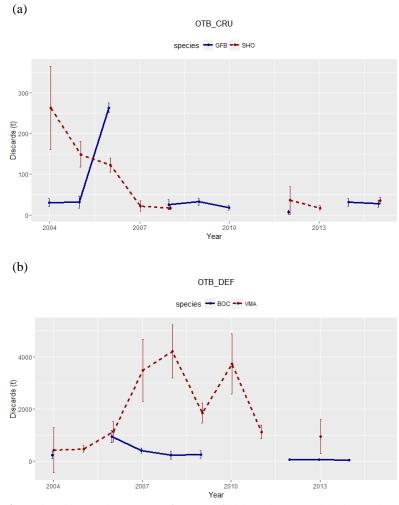


**Figure 1** – Annual percentage of species according to their presence in discards for each fishery (OTB\_CRU: crustaceans; OTB\_DEF: demersal; Absent: no occurrence; Less frequent: occurrence <30%; Frequent: occurrence  $\geq$ 30%).


#### 5.2 Total discards

#### 5.2.1 Discard volume

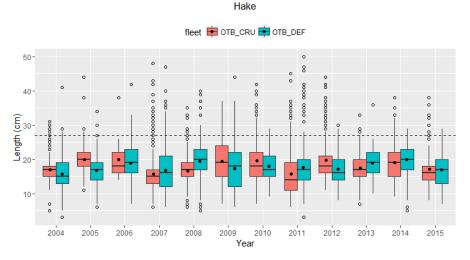
The fleet level discards for species in specific 'year, fishery' combination is presented in Tables 6, 7, 8 and 9 (Annex IV). Hake was the only species frequently discarded in all 'year, fishery' combinations and where full record of total volume of discards could be obtained. Discard fluctuated in an increasing mode until 2009 where the highest values were observed, showing a decreasing trend onwards (Figure 2(a)). The OTB\_DEF fleet was the fleet responsible for most of the discarding of this species. Blue whiting and Cephalopods nei were also discarded in all years in OTB\_CRU fishery. Figure 2 shows lower discards of blue whiting since 2006 and a decreasing trend for the cephalopods nei in the beginning of the time series. Species discarded in more than 8 years of the 11 years sampling period in each fishery were greater forkbeard and blackmouth catshark in OTB\_CRU, and boarfish and chub mackerel in OTB\_DEF (Figure 3). Discards of blackmouth catshark decreased from 2004 to 2007, remaining low (less than 100 t) in the period 2012-2013. The analysis suggests low discards of greater forkbeard (less than 50 t) with the exception of 2006, with discards around 250 t (Figure 3). Discards of chub mackerel were below 1000 t in the period 2004-2006 and increased to 2000-4000 t between 2007 and 2010. In most recent years, discards have decreased. In fact, discards were estimated at 1000 t in 2013 while discard frequency of this species was very low (< 30% occurrence) in 2012 and 2014-2015. Boarfish discards were estimated for 2004, 2006-2009 and 2012-2014, showing values mostly below 250 t.


#### 5.2.2 Numbers of discarded specimens per species at haul level

Summary tables containing information of mean numbers discarded per haul in each 'year, fishery' combination are presented in Table 10 and Table 11 (Annex IV) for OTB\_CRU fishery and OTB\_DEF fishery, respectively. Tables combine information for both frequent and less frequent species in sampled hauls. They also show that the number of individuals of the less frequent species is lower than 10 per haul. A minor part of them present higher haul-level estimates indicating larger discards at haul level but their frequency of discarding in sampled hauls only rarely achieved 30% making the current total discard estimation algorithm unreliable for many 'stock, year' combinations.



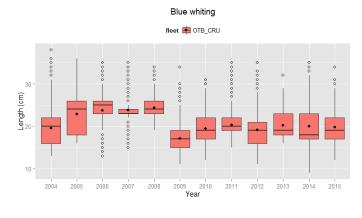
**Figure 2** – Annual variation (2004-2015) in discards of hake (a), blue whiting (b) and cephalopods nei (c) (total  $\pm$  SD). Discards of the two fisheries (OTB\_CRU: crustaceans; OTB\_DEF: demersal) are presented and, in the case of hake, includes also annual total discards for the entire OTB fleet.


10

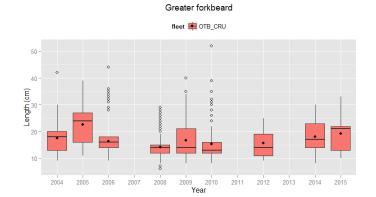


**Figure 3** – Discards (total +/- SD) of greater forkbeard (GFB), blackmouth catshark (SHO), boarfish (BOC) and chub mackerel (VMA) in each fishery: OTB\_CRU - crustaceans (a); OTB\_DEF - demersal (b).

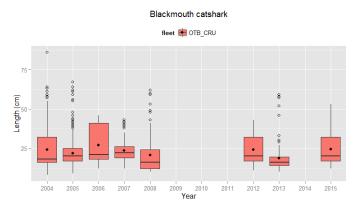
#### 5.3 Length frequency of discards


The length range, mean length and standard deviation considering the studied period, is presented by species and fishery in Tables 12 and 13 (Annex IV). Figure 4 presents the annual mean length of discarded hake by fishery during the period of 2004-2015. It shows that mean length of discards has been below the Minimum Landing Size (MLS), of 27 cm, in both fisheries, indicating MLS as the main reason for discarding this species.

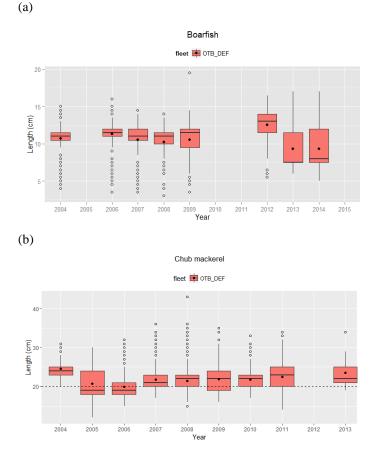



**Figure 4** –Annual variation of the discarded lengths for hake by fishery (OTB\_CRU: crustaceans; OTB\_DEF: demersal). Black points within boxes are the mean value and the horizontal dashed line represents the MLS for hake (27 cm); open circles: observations with values differing 1 SD from the mean.

Figures 5 and 6 show the annual variation of the length composition of discards in the group of species frequently discarded by OTB\_CRU and OTB\_DEF fisheries, respectively. Blue whiting is mainly discarded in the OTB\_CRU and there is neither MLS nor by-catch limits nor quota exhausted for the species in this fishery. The length analyses indicate higher mean length in the 2005-2008 periods and lower afterwards. Blue whiting discards are due to market motives related to species and/or size low value. A new market for larger individuals emerged in the later period and highgrading in this fishery, as observed onboard, may have caused the decrease in the mean size in recent years. The motives for discarding greater forkbeard and blackmouth catshark are likely related to low market value of the small lengths (e.g mean length <20 cm for forkbeard) usually captured by the OTB\_CRU fishery. In OTB\_DEF fishery (Figure 6), boarfish discards were due to no commercial value of this species. In the case of chub mackerel, the MLS (20 cm) does not appear to be the main discarding reason since there are few discards below MLS. More recently (from 2013 onwards) chub mackerel has been increasingly promoted and valorized for human consumption in Portugal (DocaPesca, 2012, 2016) and also, based on anecdotal information, used as tuna feed. In fact, a decrease in the frequency of occurrence of discards of this species in the later years was observed while landings have increased, meaning that until 2013 low commercial interest could have been the main reason for discarding.


(a)




(b)







**Figure 5** – Annual variation of the discarded lengths for blue whiting (a), greater forkbeard (b) and blackmouth catshark (c) in OTB\_CRU (crustaceans). Dot point shows the mean and open circles the observations with values differing 1 SD from the mean.



**Figure 6** – Annual variation of the discarded lengths for boarfish (a) and chub mackerel (b) in OTB\_DEF: demersal. Dot point shows the mean and open circles the observations with values differing 1 SD from the mean; the horizontal dashed line represents the MLS for chub mackerel (20 cm).

#### 6. Final Remarks

The present work provides an overview of the bulk of discards estimates from the Portuguese bottom otter trawl fleet provided by IPMA to ICES assessment Working Groups. However, a larger number of species is effectively discarded by these fleets which important discards motives are presented and discussed in Fernandes *et al.* (2015) including three species with relevant catches and/or commercial importance at national level but not assessed in ICES WG. It is shown that for Portuguese vessels operating bottom otter trawl within the Portuguese ICES Division 27.9.a the discard frequency of the large majority of the species reported is low or very low. Several of the species are in fact absent from the Portuguese fishing grounds (e.g. tusk and herring), others show very low frequency of occurrence in discards. Discards estimates at fishery level are given for the frequently discarded species ( $\geq$ 30% in sampled hauls) in each year and fishery combination. The number of species with discards estimates at fishery level is low and only one species (hake) is so consistently discarded that estimates for the entire period and

fisheries are considered reliable. Hake discards are mainly composed of small size fish and these are dumped dead overboard due to regulatory reasons, namely MLS, despite having considerable commercial value at local markets. Discards estimates for other frequent species are more fisheryspecific. Analyses of discards length distribution are very important to understand the fisheries behavior and the different fishing patterns in terms of species discarded. The main reasons for discards of a number of species by the otter trawl fleet are discussed in Fernandes *et al* (2015) for the ICES Division 27.9.a where market forces and regulatory reasons (TACs, by-catch limits, MLS) were considered the main factors. Concerning discards in general, we emphasize that conclusions on the importance of discards reported for specific fisheries should always be assessed relative to a) quantitative estimates on the fisheries impacts on the sustainability of the stocks and b) quantitative discard estimates obtained from other fleets and countries exploiting the same stocks.

A discard estimation methodology for bottom trawl fleet, considering clusters of fishing trips based on spatio-temporal exploitation patterns, is currently being developed aimed to improve the precision and accuracy of the estimates of commonly discarded species (Fernandes *et al.*, in prep). Also, IPMA I.P. intends to develop a discard estimation methodology that allows reliable estimates for the less frequent ones, exploring statistical analyses for rare events.

Moreover, procedures to extend discard estimation to the multi-gear fleet components (longline, gill and trammel nets, purse seine) are being developed. For this to be concluded, fleet effort information will be of major importance because fishing trip is a too coarse unit to describe the complex fishing effort of these fleet components, and appropriate and reliable effort units like gear dimension and soaking time, number of hooks, number of pots and traps or proxies are then necessary. For such reasons, only preliminary haul-level data on these fleets has so far been submitted to ICES Assessment Groups (e.g. Prista *et al*, 2014a; Prista *et al*, 2014b).

Additionally, IPMA I.P. and DGRM are joining efforts to have an annual routine for better integration of the onboard sampling data and the effort data used in discard estimation.

#### 7. Acknowledgements

We would like to thank skippers from cooperative vessels who collaborated with onboard sampling programmes, the observers that collected the data to accomplish this work, and DGRM for providing logbooks, sales and VMS data. Three reviewers provided useful comments to an earlier version of the manuscript.

#### 8. References

Azevedo, M., C. Silva, J.H. Vølstad, N. Prista, R. Alpoim, T. Moura, I. Figueiredo, M. Dias, A.C. Fernandes, P. Lino, M. Felício, C. Chaves, E. Soares, S. Dores, P. Gonçalves, A.M. Costa, C. Nunes. 2014. Workshop on sampling design and optimization. *Relat. Cient. Téc. do IPMA*, n°2, 79p.

Castro, J., E. Abad, I. Artetxe, F. Cardador, R. Duarte, D. Garcia, C. Hernandez, M. Marin, A. Murta, A. Punzon, I. Quincoces, M. Santurtun, C. Silva, L. Silva. 2007. Identification and segmentation of mixed-species fisheries operating in the Atlantic Iberian Peninsula waters (IBERMIX project). Final report. Contract ref.: FISH/2004/03-33. 220 pp.

Catchpole T.L., C.L.J. Frid, T.S. Gray. 2005. Discarding in the English north-east coast Nephrops norvegicus fishery: the role of social and environmental factors. Fisheries Research, 72: 45–54.

**Council Regulation (EC) No 199/2008 of 25 February 2008** concerning the establishment of a Community framework for the collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy

**Commission Implementing Decision (EU) 2016/1251 of 12 July 2016** adopting a multiannual Union programme for the collection, management and use of data in the fisheries and aquaculture sectors for the period 2017-2019.

DOCAPESCA Portos e Lotas, S.A. 2012. Campanha de Promoção da Cavala, 2ª Fase - 2013, 2p

DOCAPESCA Portos e Lotas, S.A.. 2016. Campanha de Cavala e Carapau – o melhor do nosso mar. Boletim de Informação Mensal, Janeiro 2016. 2 p.

Fernandes, A.C., N. Pérez, N. Prista, J. Santos, M. Azevedo. 2015. Discards composition from Iberian trawl fleets. Marine Policy, 53 (33-44). <u>http://dx.doi.org/10.1016/j.marpol.2014.10.012</u>

Fernandes, A.C., M. Oroszlániová, C. Silva. M. Azevedo. *in prep*. Investigating coverage of on board sampled trips and bias in fisheries catch data.

Fernandes, A. C., E. Jardim, G. Pestana. 2010. Discards raising procedures for Portuguese trawl fleet – revision of methodologies applied in previous years. Working document presented at Benchmark Workshop on Roundfish (WKROUND), 9 – 16 February 2010, ICES Headquarters, Copenhagen, Denmark. ICES CM 2010/ACOM:36, 183 pp.

Gray C.A., D.D. Johnson, M.K. Broadhurst, D.J. Young. 2005. Seasonal, spatial and gear-related influences on relationships between retained and discarded catches in a multi-species gillnet fishery. Fisheries Research, 75: 56–72.

ICES. 2007. Report of the Workshop on Discard Raising Procedures (WKDRP), 6–9 February 2007, San Sebastian, Spain. ICES CM 2007ACFM:06. 57 pp.

ICES. 2012. Report of the Working Group on Practical Implementation of Statistical Sound Catch Sampling Programs (WKPICS), 8 -10 November 2011, Bilbao, Spain. ICES CM 2011 / ACOM:52. 55pp.

ICES. 2013. Report of the Study Group on Practical Implementation of Discard Sam-pling Plans (SGPIDS), 24 June – 28 June 2013, Lysekil, Sweden. ICES CM 2013/ACOM:56. 142pp.

ICES. 2013. Report of the second Workshop on Practical Implementation of Statistical Sound Catch Sampling Programmes (WKPICS2), 6-9 November 2012, ICES Copenhagen. ICES CM 2012 / COM:54 71pp.

ICES. 2014. Report of the third Workshop on Practical Implementation of Statistical Sound Catch Sampling Programmes (WKPICS3), 19-22 November 2013, ICES HQ, Copenhagen, Denmark. ICES M2013/ACOM: 54. 109 pp.

Jardim, E., R. Alpoim, C. Silva, A.C. Fernandes, C. Chaves, M. Dias, N. Prista, A.M. Costa. 2011. Portuguese data provided to WGHMM for stock assessment in 2011. Working Document presented at the ICES Working Group on the Assessment of Southern Shelf Stocks of Hake, Monk and Megrim (WGHMM), 5-11 May 2011, ICES Headquarters, Copenhagen, Denmark. ICES CM 2011/ACOM: 11, 625 pp.

Jardim, E., A.C. Fernandes. 2013. Estimators of discards using fishing effort as auxiliary information with an application to Iberian hake (*Merluccius merluccius*) exploited by the Portuguese trawl fleets. Fisheries Research 140: 105-113.

Poos J.J., J.A. Bogaards, D.M. Quirijns, D.M. Gillis, A.D. Rijnsdorp. 2010. Individual quotas, fishing effort allocation, and over-quota discarding in mixed fisheries. ICES Journal of Marine Science, 67: 323–33.

Prista, N., E. Jardim, A.C. Fernandes. 2011. Portuguese onboard sampling protocols: contribution to the standartization of bottom otter trawl and set gears. Presentation to the Study Group on

Practical Implementation of Discard Sampling Plans (SGPIDS), 27 June – 1 July 2011, ICES Headquarters, Copenhagen, Denmark. ICES CM 2011/ACOM: 50, 116 pp.

Prista, N., C. Silva., M. Azevedo, A.C. Fernandes. 2013. Going Back in Time – Reconstructing Discard Time Series from a Portuguese Fishery. ICES CM 2013/J:13. Reykjavík, 23-28 September 2013.

Prista, N., A.C. Fernandes, C. Maia, T. Moura, I. Figueiredo. 2014a. Discards of elasmobranchs in the Portuguese fisheries operating in ICES Division IXa: Bottom otter trawl, deep-water set longlines, set gillnet and trammel net fisheries (2004-2013). Working Document for the ICES Working Group on Elasmobranch Fishes (WGEF 2014), Lisbon, Portugal, 17-26 June. 23pp.

Prista, N., A.C. Fernandes. 2014b. Discards of deepwater species by the Portuguese Bottom otter trawl and deepwater set longline fisheries operating in ICES Division IXa (2004-2013). Working Document for the ICES Working Group on the Biology and Assessment of Deep-sea Fisheries Resources (WGDEEP 2014), Copenhagen, 4-11 April. 11pp.

#### Annex I

#### List of the acronyms

TAC: Total Allowable Catch

MLS: Minimum Landing Size

VMS: Vessel Monitoring System

ICES WG: ICES Assessment Working Groups

WGDEEP: Working Group on the Biology and Assessment of Deep-Sea Fisheries Resources

WGBIE: Working Group for the Bay of Biscay and the Iberic Waters Ecoregion

WGCEPH: Working Group on Cephalopod Fisheries and Life History

WGEF: Working Group on Elasmobranch Fishes

WGHANSA: Working Group on Southern Horse Mackerel, Anchovy and Sardine

WGWIDE: Working Group on Widely Distributed Stocks

WGNEW: Working Group on Assessment of New MoU Species (created for 2012)

WKDRP: ICES Workshop on Discard Raising Procedure (2007)

SGPIDS: Study Group Practical Implementation of Discard Sampling Plans

WKPICS: Workshop on Practical Implementation of Statistical Sound Catch Sampling Programmes

20

## Annex II

| ICES WG | Supra-specific<br>group | 3-alpha<br>code | Species                                        | English name                     | Portuguese name           |
|---------|-------------------------|-----------------|------------------------------------------------|----------------------------------|---------------------------|
|         |                         | BSF             | Aphanopus carbo                                | Black scabbardfish               | Peixe-espada-preto        |
|         |                         | ARG             | Argentina spp.                                 | Argentines                       | Argentinas                |
|         |                         | ALF             | Beryx spp.                                     | Alfonsinos                       | Imperadores               |
|         |                         | USK             | Brosme brosme                                  | Tusk                             | Bolota                    |
|         |                         | RNG             | Coryphaenoides rupestres                       | Roundnose grenadier              | Lagartixa-da-rocha        |
| WGDEEP  |                         | ORY             | Hoplostethus atlanticus                        | Orange roughy                    | Olho-de-vidro laranja     |
|         |                         | BLI             | Molva dypterygia                               | Blue ling                        | Maruca-azul               |
|         |                         | LIN             | Molva molva                                    | Ling                             | Maruca                    |
|         |                         | SBR             | Pagellus bogaraveo                             | Red seabream                     | Goraz                     |
|         |                         | GFB             | Phycis blennoides                              | Greater frokbeard                | Abrótea-do-alto           |
|         |                         | TSU             | Trachyrincus scabrus                           | Roughsnout grenadier             | Granadeiro                |
|         |                         | BSS             | Dicentrarchus labrax                           | European seabass                 | Robalo-legítimo           |
|         |                         | GUG             | Eutrigla gurnardus                             | Grey gurnard                     | Cabra-morena              |
|         |                         | LDB             | Lepidorhombus boscii                           | Four-spot megrim                 | Areeiro-de-quatro-manchas |
|         |                         | MEG             | Lepidorhombus whiffiagonis                     | Megrim                           | Areeiro                   |
|         |                         | ANK             | Lophius budegassa                              | Blackbellied angler              | Tamboril-sovaco-preto     |
|         |                         | MON             | Lophius piscatorius                            | Anglerfish                       | Tamboril                  |
| WGBIE   |                         | WHG             | Lopnius piscaiorius<br>Merlangius merlangus    | Whiting                          | Badejo                    |
|         |                         |                 | 0 0                                            | -                                | Pescada-branca            |
|         |                         | HKE             | Merluccius merluccius                          | European hake                    |                           |
|         |                         | NEP             | Nephrops norvegicus                            | Norway lobster                   | Lagostim                  |
|         |                         | PLE             | Pleuronectes platessa                          | Plaice                           | Solha                     |
|         |                         | POL             | Pollachius pollachius                          | Pollack                          | Juliana                   |
|         |                         | SOL             | Solea solea                                    | Common sole                      | Linguado-legítimo         |
|         | -                       | CEP             | Cephalopoda nei                                | Cephalopods nei                  | Cefalópodes nep           |
|         | Long-finned             | OUW             | Alloteuthis spp.                               | Alloteuthis squids               | Lulas bicudas             |
|         | squids                  | SQC             | Loligo spp.                                    | Common squids                    | Lulas                     |
|         | -                       | SQU             | Loliginidae, Ommastrephidae nei                | Squids nei                       | Lulas e potas nep         |
|         |                         | FQX             | Histioteuthis spp.                             | Histioteuthis squids             | -                         |
|         | C1 (C 1                 | SQM             | Illex coindetii                                | Broadtail shortfin squid         | Pota-voadora              |
|         | Short-finned squids     | OMZ             | Ommastrephidae nei                             | Ommastrephid squids nei          | Lulas e potas             |
|         |                         | SQE             | Todarodes sagittatus                           | European flying squid            | Pota-europeia             |
|         |                         | TDQ             | Todaropsis eblanae                             | Broadtail shortfin squid         | Pota-costeira             |
| WGCEPH  |                         | EOI             | Eledone cirrhosa                               | Horned octopus                   | Polvo-cabeçudo            |
| WUCEPH  |                         | EDT             | Eledone moschata                               | Musky octopus                    | Polvo-mosqueado           |
|         |                         | OCT             | Octopodidae nei                                | Octopuses nei                    | Polvos                    |
|         | Octopuses               | OQD             | Octopus defilippi                              | Lilliput longarm octopus         | Polvo-branco-comprido     |
|         |                         | OCC             | Octopus vulgaris                               | Common octopus                   | Polvo-vulgar              |
|         |                         | I_OPG           | Opistoteuthis agassizi                         | _                                | -                         |
|         |                         | ROA             | Rossia macrosoma                               | Stout bobtail squid              | Chopo                     |
|         |                         | EJE             | Sepia elegans                                  | Elegant cuttlefish               | Choco-elegante            |
|         | Cuttlefishes and        | CTC             | Sepia officinalis                              | Common cuttlefish                | Choco-vulgar              |
|         | sepiolids               | IAR             | Sepia orbignyana                               | Pink cuttlefish                  | Choco-de-cauda            |
|         |                         | CTL             | Sepiidae, Sepiolidae nei                       | Cuttlefishes, bobtail squids nei | Chocos e chopos           |
|         |                         | GUQ             | Centrophorus squamosus                         | Leafscale gulper shark           | Lixa                      |
|         |                         | CYO             | Centroscymnus coelolepis                       | Portuguese dogfish               | Carocho                   |
|         |                         |                 | Centroscymnus coetotepis<br>Cetorhinus maximus |                                  | Tubarão-frade             |
|         |                         | BSK             |                                                | Basking shark                    |                           |
| WGEF    |                         | SCK             | Dalatias licha                                 | Kitefin shark                    | Gata                      |
|         |                         | RJB             | Dipturus batis                                 | Blue skate                       | Raia-oirega               |
|         |                         | GAG             | Galeorhinus galeus                             | Tope shark                       | Perna-de-moça             |
|         |                         |                 |                                                | Blackmouth catshark              | Leitão                    |
|         |                         | SHO<br>POR      | Galeus melastomus<br>Lamna nasus               | Porbeagle                        | Tubarão-sardo             |

 Table 1 - Species codes and common names presented in each ICES Working Group (ICES WG) and other species assessed at national level ('OTHER').

|  | Tab | le 1 | (cont.) |
|--|-----|------|---------|
|--|-----|------|---------|

| able 1 (con  | i <b>t.</b> )                 |     | -                           |                          |                         |
|--------------|-------------------------------|-----|-----------------------------|--------------------------|-------------------------|
|              |                               | RJN | Leucoraja naevus            | Cuckoo ray               | Raia-de-dois-olhos      |
|              |                               | SDS | Mustelus asterias           | Starry smoothound        | —                       |
|              |                               | SMD | Mustelus mustelus           | Smooth-hound             | Cação-liso              |
|              |                               | RJH | Raja brachyura              | Blonde ray               | Raia-pontuada           |
|              |                               | RJC | Raja clavata                | Cuckoo ray               | Raia-lenga              |
|              |                               | RJM | Raja montagui               | Spotted ray              | Raia-manchada           |
|              |                               | RJU | Raja undulata               | Undulate ray             | Raia-curva              |
|              |                               | RJA | Rostroraja alba             | White skate              | Raia-tairoga            |
|              |                               | SYC | Scyliorhinus canicula       | Small-spotted catshark   | Pata-roxa               |
|              |                               | DGS | Squalus acanthias           | Picked dogfish           | Galhudo-malhado         |
|              |                               | DGZ | Squalus spp.                | Dogfishes nei            | Esqualídeos             |
|              |                               | AGN | Squatina squatina           | Angel shark              | -                       |
| •            |                               | RJY | Raja fyllae                 | Round ray                | -                       |
|              |                               | RJO | Dipturus oxyrhinchus        | Longnosed skate          | Raia-bicuda             |
|              |                               | RJI | Leucoraja circularis        | Sandy ray                | Raia-de-São-Pedro       |
|              | RAJ (Rajidae nei)             | RJE | Raja microocellata          | Small-eyed ray           | Raia-zimbreira          |
|              |                               | JAI | Raja miraletus              | Brown ray                | Raia-de-quatro-olhos    |
| VGEF (cont.) |                               | SKA | Raja spp.                   | Raja rays nei            | Raias                   |
|              |                               | MYL | Myliobatis aquila           | Common eagle ray         | Ratão-águia             |
|              |                               | PLS | Pteroplatytrygon violacea   | Pelagic stingray         | Uge-violácea            |
|              | SRX (Rajiformes               | TTR | Torpedo marmorata           | Marbled electric ray     | Tremelga-marmoreada     |
|              | nei)                          | TTO | Torpedo nobiliana           | Electric ray             | Tremelga-negra          |
|              |                               | TOE | Torpedo spp.                | Torpedo rays             | Tremelgas               |
|              |                               | TTV | Torpedo torpedo             | Common torpedo           | Tremelga-de-olhos       |
| •            |                               | SMA | Isurus oxyrinchus           | Shortfin mako            | Tubarão-anequim         |
|              | I_PWS (Pelagic<br>sharks nei) | BSH | Prionace glauca             | Blue shark               | Tintureira              |
|              |                               | DWS | Trionace gianca             | Deep-water sharks nei    | Tubarões de profundidad |
|              |                               | GUP | Centrophorus granulosus     | Gulper shark             | Barroso                 |
|              |                               | CYP | Centroscymnus crepidater    | Longnose velvet dogfish  | Sapata-preta            |
|              |                               | CYY |                             | Shortnose velvet dogfish |                         |
|              | DWS (Deep-                    |     | Centroscymnus cryptacanthus | -                        | Xara-preta-de-natura    |
|              | water sharks nei)             | HXC | Chlamydoselachus anguineus  | Frilled shark            | -                       |
|              |                               | DCA | Deania calcea               | Birdbeak dogfish         | Sapata-branca           |
|              |                               | SDU | Deania profundorum          | Arrowhead dogfish        | Sapata-flecha           |
|              |                               | SHL | Etmopterus spp.             | Lantern sharks nei       | Lixinhas-da-fundura     |
|              |                               | SYR | Scymnodon ringens           | Knifetooth dogfish       | Arreganhada             |
|              |                               | ANE | Engraulis encrasicolus      | Anchovy                  | Biqueirão               |
| WGHANSA      |                               | HOM | Trachurus trachurus         | Horse mackerel           | Carapau-branco          |
|              |                               | PIL | Sardina pilchardus          | Sardine                  | Sardinha                |
|              |                               | BOC | Capros aper                 | Boarfish                 | Mini-saia               |
| WGWIDE       |                               | HER | Clupea harengus             | Atlantic herring         | Arenque                 |
|              |                               | MAC | Scomber scombrus            | Atlantic mackerel        | Sarda                   |
|              |                               | WHB | Micromesistius poutassou    | Blue whiting             | Verdinho                |
|              |                               | GUR | Chelidonichthys cuculus     | Red gurnard              | Cabra-vermelha          |
| WGNEW        |                               | GUU | Chelidonichthys lucernus    | Tub gurnard              | Cabra-cabaço            |
|              |                               | MUR | Mullus surmuletus           | Striped red mullet       | Salmonete-legítimo      |
|              |                               | VMA | Scomber colias              | Chub mackerel            | Cavala                  |
| OTHER        |                               | BIB | Trisopterus luscus          | Pouting                  | Faneca                  |
|              |                               |     |                             |                          |                         |

#### Annex III

The discard raising procedure presented is adapted from Jardim and Fernandes (2013).

Let D be discards in weight (kg), T fishing effort (hours), Y discards per unit effort (kg/hour) and P the trip duration (days). The following indexes are used: i=1, ..., N for fishing trips, j=1, ..., J for fleets, h for sampled hauls and s=1, ..., S for trip days. Small caps represent sampled quantities, while capitals represent population quantities.

Step 0) Computation of discards in weight  $(d_{ijs})$  and fishing time  $(t_{ijs})$  by trip (i) and fleet (j)

$$d_{ijs} = \sum_{h=1}^{h_{ijs}} d_{ijhs}$$

$$t_{ijs} = \sum_{h=1}^{h_{ijs}} t_{ijhs}$$

Step 1) Estimation of discards in weight per hour by fleet

$$\hat{y}_{js} = \frac{\sum_{i=1}^{n_{js}} d_{ijs}}{\sum_{i=1}^{n_{js}} t_{ijs}}$$

with variance

$$var(\hat{y}_{js}) = \frac{\sum_{i=1}^{n_{js}} (d_{ijs} - \bar{d}_{js})^2}{\left(\sum_{i=1}^{n_{js}} t_{ijs}\right)^2 (n_{js} - 1)}$$

Step 2) Estimation of the total discards

$$\hat{d} = \sum_{j=1}^{J} \sum_{s=1}^{S} \frac{T_{js} \times P_{js}}{N_{js}} \hat{y}_{js}$$

with variance

$$var(\hat{d}) = \sum_{j=1}^{J} \sum_{s=1}^{S} \left(\frac{T_{js} \times P_{js}}{N_{js}}\right)^2 var(\hat{y}_{js})$$

### Annex IV

**Table 2** - Frequency of occurrence (%) of species in the discards of hauls sampled in the OTB\_CRU fishery (2004-2015). See Table 1 for species codes; "--" indicates no occurrence; bold numbers indicate frequency of occurrence  $\geq$ 30%.

| ICES WG | 3-alpha code             | 2004   | 2005   | 2006     | 2007            | 2008            | 2009    | 2010     | 2011            | 2012     | 2013 | 2014 | 2015     |
|---------|--------------------------|--------|--------|----------|-----------------|-----------------|---------|----------|-----------------|----------|------|------|----------|
|         | BSF<br>ARG               | 6<br>1 | 1<br>4 | 13       | <br>14          | 3               | <br>7   | 2        |                 | <br>3    |      |      | 4<br>2   |
|         | ALF                      | 1      |        | 13       |                 |                 |         |          | 2               |          |      |      |          |
|         | USK                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | RNG                      | 1      | 1      | 3        | 4               |                 |         |          | 2               |          |      |      |          |
| WGDEEP  | ORY                      | 1      |        |          | 1               | 2               |         |          |                 |          |      |      | 4        |
|         | BLI                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | LIN                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | SBR                      |        |        |          | 1               |                 |         | 1        |                 | 1        |      |      |          |
|         | GFB                      | 30     | 42     | 57       | 26              | 64              | 31      | 32       | 25              | 35       | 29   | 36   | 51       |
|         | TSU                      | 1      | 5      | 3        |                 | 3               |         | 1        |                 | 3        |      | 5    |          |
|         | BSS                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | GUG                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | LDB                      | 13     | 3      | 30       | 16              | 5               | 11      | 7        | 2               | 16       | 14   | 21   | 27       |
|         | MEG                      |        |        |          |                 |                 | 2       | 1        |                 | 1        |      | 5    | 4        |
|         | ANK                      |        | 3      |          | 3               | 6               | 4       | 8        |                 |          |      | 2    | 2        |
| WGBIE   | MON                      | 1      | 3      | 3        |                 | 5               | 6       | 7        | 2               | 1        |      |      | 6        |
|         | WHG                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | HKE<br>NEP               | 42     | 57     | 50<br>23 | <b>77</b><br>14 | <b>85</b><br>27 | 76<br>6 | 74<br>13 | <b>79</b><br>14 | 60<br>25 | 79   | 81   | 69<br>22 |
|         | PLE                      | 31     | 47     |          |                 |                 |         |          |                 |          | 32   | 14   |          |
|         | POL                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | SOL                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | OUW                      | 16     | 4      |          | 5               | 11              | 10      | 3        | 12              | 3        | 25   | 2    | 2        |
|         | SQC                      |        | 1      |          |                 | 2               |         | 3        | 2               |          |      |      |          |
|         | FQX                      | 1      | 1      |          |                 |                 |         |          |                 |          |      |      |          |
|         | SQM                      | 8      | 16     | 3        | 4               | 2               | 1       | 10       | 14              | 3        |      | 2    |          |
|         | OMZ                      |        | 1      |          |                 |                 |         |          | 2               |          |      |      |          |
|         | SQE                      | 4      | 1      |          |                 | 2               |         |          |                 | 3        |      | 2    |          |
|         | TDQ                      | 26     | 15     |          | 1               | 2               |         | 2        | 14              |          | 4    | 5    |          |
|         | EOI                      | 59     | 46     | 40       | 21              | 12              | 8       | 10       | 14              | 16       | 11   | 29   | 57       |
| VACEDU  | EDT                      | 4      | 7      | 13       | 3               | 2               | 2       | 9        | 12              | 1        | 4    | 10   | 4        |
| VGCEPH  | OCT                      |        |        |          |                 |                 |         |          | 5               | 1        |      |      | 4        |
|         | OQD                      | 1      |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | OCC                      | 2      | 1      |          |                 | 9               | 4       | 2        | 4               | 4        | 11   | 2    | 2        |
|         | I_OPG                    | 3      |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | ROA                      | 26     | 28     | 37       | 26              | 20              | 31      | 13       | 7               | 16       | 29   | 17   | 8        |
|         | EJE                      | 11     | 7      | 7        | 4               | 6               | 5       | 4        | 5               | 1        |      |      |          |
|         | CTC                      | 2      | 1      |          | 1               | 2               | 1       | 3        | 2               | 4        | 7    |      |          |
|         | IAR                      | 8      |        | 3        |                 | 2               | 7       | 5        | 4               | 1        |      |      |          |
|         | CTL                      | 13     | 1      | 3        | 4               | 3               | 4       | 3        | 2               | 1        | 7    | 5    | 10       |
|         | GUQ                      |        |        |          |                 |                 | 1       |          |                 |          |      | 5    | 4        |
|         | CYO                      |        |        |          |                 |                 |         |          |                 |          | 7    |      |          |
|         | BSK                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | SCK                      |        | 1      |          |                 |                 | 1       |          |                 |          |      |      |          |
|         | RJB<br>GAG               |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | SHO                      | 56     | 51     | 50       | 37              | 36              | 25      | 24       | 27              | 46       | 46   | 29   | 55       |
|         | POR                      |        |        |          | 57              |                 |         |          |                 |          |      | 2)   |          |
|         | RJN                      | 2      |        |          |                 |                 | 1       | 1        |                 |          |      |      |          |
|         | SDS                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | SMD                      |        |        |          | 1               |                 |         |          |                 |          |      |      |          |
|         | RJH                      | 1      |        |          |                 | 2               |         |          | 2               |          |      |      |          |
|         | RJC                      | 1      | 4      |          | 1               | 3               | 1       | 3        | 4               |          |      | 2    |          |
|         | RJM                      |        |        |          |                 |                 | 2       | 1        |                 |          |      |      |          |
|         | RJU                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
| WORE    | RJA                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
| WGEF    | SYC                      | 23     | 19     | 7        | 26              | 12              | 23      | 31       | 48              | 19       | 7    | 36   | 25       |
|         | DGS                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | DGZ                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | AGN                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | MYL                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | PLS                      | 1      |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | TTR                      |        |        |          | 1               |                 |         |          |                 |          |      |      |          |
|         | TTO                      | 1      |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | TOE                      |        |        |          |                 |                 |         |          |                 | 3        |      |      |          |
|         |                          |        |        | 3        |                 |                 |         | 1        |                 | 1        |      | 2    |          |
|         | TTV                      |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | TTV<br>SMA               |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | TTV<br>SMA<br>BSH        |        |        |          |                 |                 |         |          |                 |          |      |      |          |
|         | TTV<br>SMA<br>BSH<br>GUP |        |        | <br>     |                 |                 |         | <br>1    |                 | <br>1    |      | 2    |          |
|         | TTV<br>SMA<br>BSH        |        |        |          |                 |                 |         |          |                 |          |      |      |          |

Table 2 (cont.)

| ICES WG      | 3-alpha code | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|--------------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
|              | DCA          | 5    | 5    | 3    | 4    | 8    | 2    | 2    | 2    | 4    | 18   | 7    | 2    |
| WODE         | SDU          |      |      |      |      |      |      |      | 2    |      |      | 2    | 2    |
| WGEF (cont.) | SHL          | 32   | 23   | 37   | 22   | 15   | 8    | 11   | 23   | 29   | 7    | 12   | 16   |
|              | SYR          | 4    | 1    |      |      |      | 1    |      |      | 1    |      |      |      |
|              | ANE          |      |      | 13   | 4    |      |      |      | 7    |      |      |      |      |
| WGHANSA      | HOM          | 2    | 8    | 7    | 8    | 11   | 17   | 24   | 25   | 9    | 7    | 36   | 31   |
|              | PIL          | 1    |      |      |      |      |      |      |      |      |      |      |      |
| WGWIDE       | BOC          | 32   | 16   | 47   | 34   | 17   | 57   | 29   | 39   | 32   | 36   | 40   | 25   |
|              | HER          |      |      |      |      |      |      |      |      |      |      |      |      |
|              | MAC          | 10   | 11   | 10   | 22   | 18   | 1    | 4    | 25   | 22   | 18   | 2    | 12   |
|              | WHB          | 83   | 86   | 73   | 68   | 56   | 67   | 84   | 91   | 72   | 93   | 60   | 82   |
|              | GUR          |      |      |      |      |      |      |      |      |      | 4    |      |      |
| WGNEW        | GUU          |      |      | 3    |      |      |      |      |      |      |      |      |      |
|              | MUR          |      |      |      |      |      |      | 4    | 4    |      |      |      |      |
|              | VMA          | 10   | 11   | 10   | 22   | 18   | 1    | 4    | 25   | 22   | 18   | 2    | 12   |
| OTHER        | BIB          | 1    |      |      |      |      |      |      |      |      |      |      |      |
|              | JAA          |      | 5    | 33   | 37   | 39   | 31   | 51   | 43   | 15   | 18   | 36   | 27   |

**Table 3** - Frequency of discarding (%) of supra-specif taxa in the hauls sampled from the OTB\_CRU fishery (2004-2015). See Table 1 for species groupings; "---" indicates no occurrence; bold numbers indicate frequency of occurrence  $\geq$ 30%.

| ICES WG | Supra-specific group       | 3-alpha code | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|---------|----------------------------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
|         | Long-finned squids         |              | 16   | 5    |      | 5    | 12   | 10   | 6    | 14   | 3    | 25   | 2    | 2    |
|         | Squids                     | SQU          |      |      |      |      |      |      | 5    | 2    | 3    |      | 2    | 6    |
| WGCEPH  | Short-finned squids        |              | 36   | 31   | 3    | 5    | 5    | 1    | 12   | 25   | 6    | 4    | 7    |      |
| WGCEPH  | Octopuses                  |              | 64   | 50   | 53   | 23   | 23   | 14   | 18   | 32   | 24   | 25   | 40   | 63   |
|         | Cuttlefishes and sepiolods |              | 41   | 38   | 47   | 33   | 29   | 42   | 24   | 16   | 25   | 36   | 21   | 18   |
|         | Cephalopoda nei            | CEP          | 77   | 74   | 67   | 52   | 50   | 54   | 49   | 48   | 47   | 57   | 52   | 75   |
|         | Rajidae nei                | RAJ          | 5    | 7    | 7    | 1    | 3    | 1    | 1    | 2    | 1    | 4    | 5    |      |
| WOFF    | Rajiformes nei             | SRX          | 2    |      | 3    | 1    |      |      | 1    |      | 4    |      | 2    | 2    |
| WGEF    | Pelagic sharks nei         | I_PWS        |      |      |      |      |      |      |      |      |      |      |      |      |
|         | Deep-water sharks nei      | DWS          | 37   | 28   | 40   | 25   | 18   | 11   | 12   | 23   | 35   | 25   | 19   | 24   |

**Table 4** - Frequency of occurrence (%) of species in the discards of hauls sampled in the OTB\_DEF fishery (2004-2015). See Table 1 for species codes; "--" indicates no occurrence; bold numbers indicate frequency of occurrence  $\geq$ 30%.

| ICES WG | 3-alpha code | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|---------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
|         | BSF          | 2    | 1    | 2    |      |      |      |      |      |      |      |      |      |
|         | ARG          | 36   | 31   | 32   | 31   | 17   | 22   | 12   | 34   | 15   | 24   | 2    | 17   |
|         | ALF          |      |      |      |      |      |      |      |      |      |      |      |      |
|         | USK          |      |      |      |      |      |      |      |      |      |      |      |      |
|         | RNG          |      |      |      |      |      |      |      |      |      |      |      |      |
| WGDEEP  | ORY          |      |      |      |      |      |      |      |      |      |      |      |      |
|         | BLI          |      |      |      |      |      |      |      |      |      |      |      |      |
|         | LIN          |      |      |      |      |      |      |      |      |      |      |      |      |
|         | SBR          |      |      | 1    | 1    |      |      |      |      |      |      |      |      |
|         | GFB          | 5    |      | 2    | 1    |      | 4    | 2    |      |      | 2    |      | 2    |
|         | TSU          |      |      | 1    |      |      |      |      |      |      |      |      |      |
|         | BSS          |      |      |      |      |      |      |      |      |      |      |      |      |
|         | GUG          |      | 1    |      | 1    | 2    | 3    | 1    |      | 5    |      | 6    | 2    |
|         | LDB          | 3    |      | 9    | 6    | 2    | 4    | 3    | 10   | 3    | 10   | 10   | 8    |
|         | MEG          | 2    |      | 1    |      |      |      |      | 1    |      | 2    |      | 2    |
|         | ANK          |      | 1    |      |      |      | 1    | 1    | 2    |      |      |      |      |
| WGBIE   | MON          | 1    | 1    | 1    | 1    |      | 1    | 3    |      |      |      |      |      |
| WGBIE   | WHG          |      |      |      | 1    |      |      |      |      |      |      |      |      |
|         | HKE          | 64   | 78   | 74   | 82   | 78   | 89   | 72   | 71   | 87   | 62   | 81   | 58   |
|         | NEP          |      | 1    |      | 1    |      |      |      |      |      |      |      |      |
|         | PLE          |      |      |      |      |      |      |      |      |      |      |      |      |
|         | POL          |      |      |      |      |      |      |      |      |      |      | 2    |      |
|         | SOL          |      | 1    |      |      |      |      |      |      | 2    |      |      |      |
| WCCEDU  | OUW          | 46   | 45   | 18   | 9    | 24   | 19   | 12   | 22   | 20   | 20   | 12   | 12   |
| WGCEPH  | SQC          | 4    | 2    |      | 1    |      |      | 2    | 7    | 2    | 20   | 2    | 2    |

| 2  |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|----|-------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               | 2                                                                 |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    | 2                             |                                                                   | 8                                                                                                   |                                                                                                                                       |
| 5  | 3                             | 2                                                                 | 4                                                                                                   | 6                                                                                                                                     |
| 2  | 2                             |                                                                   |                                                                                                     |                                                                                                                                       |
| 1  |                               |                                                                   |                                                                                                     |                                                                                                                                       |
| 1  |                               |                                                                   |                                                                                                     |                                                                                                                                       |
| 11 | 12                            | 16                                                                | 8                                                                                                   | 6                                                                                                                                     |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   | 4                                                                                                   | 2                                                                                                                                     |
| 7  |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               | 2                                                                 | 2                                                                                                   | 2                                                                                                                                     |
|    | 3                             | 2                                                                 |                                                                                                     |                                                                                                                                       |
| 4  |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               | 2                                                                 |                                                                                                     | 2                                                                                                                                     |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   | 4                                                                                                   |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               | 2                                                                 |                                                                                                     |                                                                                                                                       |
| 12 | 3                             | 6                                                                 | 10                                                                                                  | 6                                                                                                                                     |
| 2  |                               | 2                                                                 |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
| 42 | 23                            | 20                                                                | 42                                                                                                  | 17                                                                                                                                    |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
| 17 | 2                             | 4                                                                 | 6                                                                                                   | 2                                                                                                                                     |
|    |                               |                                                                   |                                                                                                     | 6                                                                                                                                     |
|    |                               |                                                                   |                                                                                                     | 10                                                                                                                                    |
|    |                               |                                                                   |                                                                                                     | 21                                                                                                                                    |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     |                                                                                                                                       |
|    |                               |                                                                   |                                                                                                     | 10<br>62                                                                                                                              |
|    | 5<br>30<br>25<br><br>29<br>18 | 30         15           25         47               29         37 | 30         15         22           25         47         34                29         37         44 | 30         15         22         12           25         47         34         40                 29         37         44         29 |

Table 4 (cont.)

| ICES WG | 3-alpha code | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|---------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
|         | GUR          | 23   | 12   | 5    | 2    | 8    | 5    | 5    | 8    | 15   | 30   | 25   | 10   |
| WGNEW   | GUU          | 2    | 1    | 6    | 2    | 7    | 2    | 3    | 7    |      |      | 10   | 2    |
|         | MUR          |      |      |      | 1    |      |      | 1    | 1    |      |      |      |      |
|         | VMA          | 38   | 36   | 45   | 69   | 75   | 70   | 67   | 71   | 23   | 44   | 12   | 10   |
| OTHER   | BIB          | 15   | 13   | 4    | 1    | 11   | 6    | 8    | 11   | 22   | 30   | 10   | 21   |
|         | JAA          | 5    | 23   | 80   | 79   | 59   | 52   | 35   | 40   | 27   | 60   | 35   | 15   |

**Table 5** - Frequency of discarding (%) of supra-specic taxa in the hauls sampled from the OTB\_DEF fishery (2004-2015). See Table 1 for species groupings; "--" indicates no occurrence; bold numbers indicate frequency of occurrence  $\geq$ 30%.

| ICES WG | Supra-specific group       | 3-alpha code | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|---------|----------------------------|--------------|------|------|------|------|------|------|------|------|------|------|------|------|
|         | Long-finned squids         |              | 48   | 47   | 18   | 10   | 24   | 19   | 14   | 29   | 22   | 28   | 13   | 15   |
|         | Squids                     | SQU          | 2    |      |      |      |      |      | 2    | 8    | 3    |      | 8    | 6    |
| WGCEPH  | Short-finned squids        |              | 17   | 8    |      | 2    | 1    |      |      | 2    | 2    | 2    | 8    |      |
| WUCEPH  | Octopuses                  |              | 18   | 21   | 12   | 15   | 24   | 20   | 11   | 19   | 17   | 18   | 12   | 12   |
|         | Cuttlefishes and sepiolods |              | 29   | 26   | 10   | 15   | 17   | 18   | 5    | 11   | 3    | 4    | 6    | 4    |
|         | Cephalopoda nei            | CEP          | 66   | 59   | 29   | 31   | 48   | 38   | 25   | 53   | 33   | 40   | 40   | 33   |
|         | Rajidae nei                | RAJ          | 2    | 1    | 1    |      |      |      | 2    |      | 2    |      | 8    | 2    |
| WGEF    | Rajiformes nei             | SRX          |      |      |      |      |      |      |      |      |      |      |      |      |
|         | Pelagic sharks nei         | I_PWS        |      |      |      |      |      |      |      |      |      |      |      |      |
|         | Deep-water sharks nei      | DWS          | 2    | 3    | 1    |      |      | 1    |      |      |      |      |      |      |

| ICES WG | 3-alpha code | 2004                  | 2005          | 2006           | 2007          | 2008          | 2009          | 2010           | 2011           | 2012          | 2013         | 2014           | 201      |
|---------|--------------|-----------------------|---------------|----------------|---------------|---------------|---------------|----------------|----------------|---------------|--------------|----------------|----------|
|         | BSF          | (a)                   | (a)           | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | (a       |
|         | ARG          | (a)                   | (a)           | (a)            | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | 0 (0%)       | 0 (0%)         | (a       |
|         | ALF          | (a)                   | 0 (0%)        | (a)            | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)         | (a)            | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (0     |
|         | RNG          | (a)                   | (a)           | (a)            | (a)           | 0 (0%)        | 0 (0%)        | 0 (0%)         | (a)            | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (0     |
| WGDEEP  | ORY          | (a)                   | 0(0%)         | 0 (0%)         | (a)           | (a)           | 0 (0%)        | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (0     |
|         | SBR          | 0 (0%)                | 0(0%)         | 0 (0%)         | (a)           | 0 (0%)        | 0 (0%)        | (a)            | 0 (0%)         | (a)           | 0 (0%)       | 0 (0%)         | 0 (0     |
|         | GFB          | 30<br>(33%)           | 31<br>(48%)   | 264<br>(5%)    | (a)           | 25<br>(50%)   | 33<br>(25%)   | 18<br>(31%)    | (a)            | 7<br>(63%)    | (a)          | 31<br>(31%)    | 2<br>(30 |
|         | TSU          | (a)                   | (a)           | (a)            | 0 (0%)        | (a)           | 0 (0%)        | (a)            | 0 (0%)         | (a)           | 0 (0%)       | (a)            | 0 (0     |
|         | LDB          | (a)                   | (a)           |                | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | (a)          | (a)            | (;       |
|         | MEG          | 0 (0%)                | 0 (0%)        | 0 (0%)         | 0 (0%)        | 0 (0%)        | (a)           | (a)            | 0 (0%)         | (a)           | 0 (0%)       | (a)            | (;       |
|         | ANK          | 0 (0%)                | (a)           | 0 (0%)         | (a)           | (a)           | (a)           | (a)            | 0 (0%)         | 0 (0%)        | 0 (0%)       | (a)            | (;       |
| WGBIE   | MON          | (a)                   | (a)           | (a)            | 0 (0%)        | (a)           | (a)           | (a)            | (a)            | (a)           | 0 (0%)       | 0 (0%)         | (;       |
|         | HKE          | 87<br>(31%)           | 253<br>(54%)  | 51<br>(45%)    | 247<br>(40%)  | 251<br>(48%)  | 962<br>(45%)  | 183<br>(15%)   | 169<br>(32%)   | 159<br>(53%)  | 121<br>(33%) | 323<br>(36%)   | 3<br>(34 |
|         | NEP          | 10<br>(46%)           | 27<br>(53%)   | (a)            | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | 3<br>(54%)   | (a)            | (        |
|         | OUW          | (a)                   | (a)           | 0 (0%)         | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | (a)          | (a)            | 0 (      |
|         | SQC          | 0 (0%)                | (a)           | 0 (0%)         | 0 (0%)        | (a)           | 0 (0%)        | (a)            | (a)            | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 ((     |
|         | FQX          | (a)                   | (a)           | 0 (0%)         | 0 (0%)        | (a)<br>0 (0%) | 0 (0%)        | (a)<br>0 (0%)  | (a)<br>0 (0%)  | 0 (0%)        | 0 (0%)       | 0(0%)          | 0 (      |
|         | SQM          | (a)<br>(a)            |               | (a)            | (a)           |               | (a)           | (a)            | (a)            | (a)           | 0 (0%)       | (a)            | 0 ((     |
|         | OMZ          | (a)<br>0 (0%)         | (a)           | (a)<br>0 (0%)  | (a)<br>0 (0%) | (a)<br>0 (0%) | (a)<br>0 (0%) | (a)<br>0 (0%)  |                | (a)<br>0 (0%) | 0(0%)        | (a)<br>0 (0%)  | 0(0      |
|         |              |                       | (a)           |                |               |               |               |                | (a)            |               |              |                |          |
|         | SQE          | (a)                   | (a)           | 0 (0%)         | 0 (0%)        | (a)           | 0 (0%)        | 0 (0%)         | 0 (0%)         | (a)           | 0 (0%)       | (a)            | 0 ((     |
|         | TDQ          | (a)                   | (a)           | 0 (0%)         | (a)           | (a)           | 0 (0%)        | (a)            | (a)            | 0 (0%)        | (a)          | (a)            | 0 (      |
|         | EOI          | 277<br>(32%)          | 99<br>(38%)   | 45<br>(10%)    | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | (a)          | (a)            | (29      |
| WGCEPH  | EDT          | (a)                   | (a)           | (a)            | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | (a)          | (a)            | (        |
|         | OCT          | 0 (0%)                | 0 (0%)        | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)         | (a)            | (a)           | 0 (0%)       | 0 (0%)         | (        |
|         | OQD          | (a)                   | 0(0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (      |
|         | OCC          | (a)                   | (a)           | 0 (0%)         | 0 (0%)        | (a)           | (a)           | (a)            | (a)            | (a)           | (a)          | (a)            | (        |
|         | I_OPG        | (a)                   | 0(0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (      |
|         | ROA          | (a)                   | (a)           | 26<br>(7%)     | (a)           | (a)           | 16<br>(52%)   | (a)            | (a)            | (a)           | (a)          | (a)            | (        |
|         | EJE          | (a)                   | (a)           | (a)            | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | 0 (0%)       | 0 (0%)         | 0 (      |
|         | CTC          | (a)                   | (a)           | 0 (0%)         | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | (a)          | 0 (0%)         | 0 (      |
|         | IAR          | (a)                   | 0 (0%)        | (a)            | 0 (0%)        | (a)           | (a)           | (a)            | (a)            | (a)           | 0 (0%)       | 0 (0%)         | 0 (      |
|         | CTL          | (a)                   | (a)           | (a)            | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | (a)          | (a)            | (        |
|         | GUQ          | 0 (0%)                | 0 (0%)        | 0 (0%)         | 0 (0%)        | 0 (0%)        | (a)           | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | (a)            | 0 (      |
|         | СҮО          | 0 (0%)                | 0 (0%)        | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)         | 0 (0%)         | 0 (0%)        | (a)          | 0 (0%)         | 0 ((     |
|         | SCK          | 0 (0%)                | (a)           | 0 (0%)         | 0 (0%)        | 0 (0%)        | (a)           | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (0     |
|         | GAG          | (a)                   | (a)           | 0 (0%)         | 0 (0%)        | 0(0%)         | (u)<br>0 (0%) | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (0     |
|         | UAU          | 263                   | 150           | 123            | 22            | 17            | 0(0/0)        | 0(0/0)         | 0(0/0)         | 36            | 17           | 0(070)         | 3        |
|         | SHO          | (39%)                 | (21%)         | (14%)          | (59%)         | (27%)         | (a)           | (a)            | (a)            |               | (32%)        | (a)            | (23      |
|         | RJN          | (a)                   | 0(0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)        | (a)           | (a)            | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (      |
|         | SMD          | 0 (0%)                | 0 (0%)        | 0 (0%)         | (a)           | 0(0%)         | 0(0%)         | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (      |
|         | RJH          | (a)                   | 0 (0%)        | 0 (0%)         | 0 (0%)        | (a)           | 0 (0%)        | 0 (0%)         | (a)            | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (      |
|         | RJC          | (a)                   | (a)           | 0 (0%)         | (a)           | (a)           | (a)           | (a)            | (a)            | 0 (0%)        | 0 (0%)       | (a)            | 0 ((     |
|         | RJM          | 0 (0%)                | (a)<br>0 (0%) | 0 (0%)         | (a)<br>0 (0%) | (a)<br>0 (0%) | (a)           | (a)            | (a)<br>0 (0%)  | 0 (0%)        | 0 (0%)       | (a)<br>0 (0%)  | 0 ((     |
| WGEF    | SYC          | (a)                   | (a)           | (a)            | (a)           | (a)           | (a)           | 30             | 49             | (a)           | (a)          | 72             | (4       |
|         | DIC          |                       | 0.00%         |                |               | 0 (09/ )      |               | ( <b>29%</b> ) | ( <b>40%</b> ) | 0.0023        |              | ( <b>38%</b> ) |          |
|         | PLS          | (a)                   | 0 (0%)        | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (      |
|         | TTR          | 0 (0%)                | 0 (0%)        | 0 (0%)         | (a)           | 0 (0%)        | 0 (0%)        | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 ((     |
|         | TTO          | (a)                   | 0 (0%)        | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)         | 0 (0%)         | 0 (0%)        | 0 (0%)       | 0 (0%)         | 0 (      |
|         | TOE          | 0 (0%)                | 0 (0%)        | 0 (0%)         | (a)           | 0 (0%)        | 0 (0%)        | 0 (0%)         | 0 (0%)         | (a)           | 0 (0%)       | 0 (0%)         | 0 (      |
|         | TTV          | 0 (0%)                | 0 (0%)        | (a)            | 0 (0%)        | 0 (0%)        | 0 (0%)        | (a)            | 0 (0%)         | (a)           | 0 (0%)       | (a)            | 0 (      |
|         | GUP          | 0 (0%)                | 0 (0%)        | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)        | (a)            | 0 (0%)         | (a)           | 0 (0%)       | (a)            | 0 ((     |
|         | DCA          | (a)                   | (a)           | (a)            | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | (a)          | (a)            | 0 (0     |
|         | SDU          | 0 (0%)                | 0 (0%)        | 0 (0%)         | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)         | (a)            | 0 (0%)        | 0 (0%)       | (a)            | 0 (0     |
|         | SHL          | 42<br>(40%)           | (a)           | 321<br>(5%)    | (a)           | (a)           | (a)           | (a)            | (a)            | (a)           | (a)          | (a)            | (2       |
|         | SYR          | ( <b>40%</b> )<br>(a) | (a)           | (5%)<br>0 (0%) | 0 (0%)        | 0 (0%)        | (a)           | 0 (0%)         | 0 (0%)         | (a)           | 0 (0%)       | 0 (0%)         | 0 (0     |
|         | ALC          | (a)                   | (a)           | 0 (070)        | 0 (0%)        | 0 (0%)        | (a)           | 0 (0%)         | 0 (0%)         | (a)           | 0(0%)        | 0(0%)          | U (I     |

**Table 6** - Volume (in metric tons) and CVs (%, in brackets) of species in the OTB\_CRU fishery (2004-2015). See Table 1 for species codes; "(a)" = low frequency of occurrence.

Table 6 (cont.) -

| ICES WG | 3-alpha code | 2004          | 2005         | 2006         | 2007         | 2008         | 2009         | 2010         | 2011         | 2012         | 2013         | 2014         | 2015         |
|---------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|         | ANE          | 0 (0%)        | 0 (0%)       | (a)          | (a)          | 0 (0%)       | 0 (0%)       | 0 (0%)       | (a)          | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       |
| WGHANSA | HOM          | (a)           | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | 113<br>(41%) | 37<br>(52%)  |
|         | PIL          | (a)           | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       |
|         | BOC          | 25<br>(43%)   | (a)          | 73<br>(30%)  | 89<br>(66%)  | (a)          | 166<br>(35%) | (a)          | 9<br>(36%)   | 32<br>(85%)  | 3<br>(66%)   | 75<br>(59%)  | (a)          |
| WGWIDE  | MAC          | (a)           | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          |
|         | WHB          | 2491<br>(38%) | 676<br>(33%) | 3558<br>(4%) | 324<br>(48%) | 161<br>(41%) | 291<br>(18%) | 376<br>(22%) | 507<br>(39%) | 278<br>(60%) | 633<br>(43%) | 554<br>(40%) | 608<br>(52%) |
|         | GUR          | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | (a)          | 0 (0%)       | 0 (0%        |
| WGNEW   | GUU          | 0 (0%)        | 0 (0%)       | (a)          | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       |
|         | MUR          | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | (a)          | (a)          | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       |
|         | VMA          | (a)           | (a)          | (a)          | (a)          | 25<br>(27%)  | (a)          | 33<br>(46%)  | 52<br>(39%)  | (a)          | (a)          | (a)          | (a)          |
| OTHER   | BIB          | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       |
|         | JAA          | 0 (0%)        | (a)          | 112<br>(43%) | 49<br>(55%)  | 93<br>(30%)  | 427<br>(2%)  | 177<br>(39%) | 113<br>(66%) | (a)          | (a)          | 42<br>(32%)  | (a)          |

**Table 7 -** Volume (in metric tons) and CVs (%, in brackets) of supra-specic taxa in the OTB\_CRU fishery (2004-2015).See Table 1 for species codes; "--" indicates no occurrence, "(a)" = low frequency of occurrence.

|         | i foi species e            | Joues,          | marca        | 1000         | courrent    | .c, (u)     | 10 W        | neque       | 10 y 01 v   | Jecuire     | nee.        |             |             |            |
|---------|----------------------------|-----------------|--------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|
| ICES WG | Supra-specific<br>group    | 3-alpha<br>code | 2004         | 2005         | 2006        | 2007        | 2008        | 2009        | 2010        | 2011        | 2012        | 2013        | 2014        | 2015       |
|         | Long-finned<br>squids      |                 | (a)          | (a)          | 0 (0%)      | (a)         | (a)        |
|         | Squids                     | SQU             | 0 (0%)       | 0 (0%)       | 0 (0%)      | 0 (0%)      | 0 (0%)      | 0 (0%)      | (a)         | (a)         | (a)         | 0 (0%)      | (a)         | (a)        |
|         | Short-finned<br>squids     |                 | 23<br>(32%)  | 59<br>(37%)  | (a)         | 0 (0%      |
| WGCEPH  | Octopuses                  |                 | 341<br>(26%) | 117<br>(26%) | 57<br>(15%) | (a)         | (a)         | (a)         | (a)         | 24<br>(50%) | (a)         | (a)         | 39<br>(33%) | 89<br>(24% |
|         | Cuttlefishes and sepiolods |                 | 16<br>(32%)  | 16<br>(58%)  | 34<br>(23%) | 3<br>(40%)  | (a)         | 14<br>(20%) | (a)         | (a)         | (a)         | 2<br>(23%)  | (a)         | (a)        |
|         | Cephalopoda nei            | CEP             | 392<br>(25%) | 308<br>(39%) | 94<br>(11%) | 35<br>(28%) | 28<br>(50%) | 49<br>(18%) | 34<br>(29%) | 44<br>(61%) | 34<br>(55%) | 19<br>(19%) | 46<br>(29%) | 96<br>(21% |
|         | Rajidae nei                | RAJ             | (a)          | (a)          | (a)         | (a)         | (a)         | (a)         | (a)         | (a)         | (a)         | (a)         | (a)         | (0%        |
| WGEF    | Rajiformes nei             | SRX             | (a)          | 0 (0%)       | 0 (0%)      | 0 (0%)      | 0 (0%)      | 0 (0%)      | (a)         | (a)         | (a)         | 0 (0%)      | (a)         | (a)        |
|         | Deep-water<br>sharks nei   | DWS             | 82<br>(45%)  | (a)          | 321<br>(5%) | (a)         | (a)         | (a)         | (a)         | (a)         | 20<br>(75%) | (a)         | (a)         | (a)        |

**Table 8** – Volume (in metric tons) and CVs (%, in brackets) of species in the OTB\_DEF fishery (2004-2015). See Table 1 for species codes; "(a)" = low frequency of occurrence.

| ICES WG | 3-alpha code | 2004         | 2005          | 2006         | 2007          | 2008         | 2009         | 2010         | 2011         | 2012         | 2013         | 2014         | 2015        |
|---------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|
|         | BSF          | (a)          | (a)           | (a)          | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)      |
|         | ARG          | 59<br>(30%)  | 33<br>(23%)   | 23<br>(20%)  | 47<br>(28%)   | (a)          | (a)          | (a)          | 15<br>(25%)  | (a)          | (a)          | (a)          | (a)         |
| WGDEEP  | SBR          | 0 (0%)       | 0 (0%)        | (a)          | (a)           | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%       |
|         | GFB          | (a)          | 0 (0%)        | (a)          | (a)           | 0 (0%)       | (a)          | (a)          | 0 (0%)       | 0 (0%)       | (a)          | 0 (0%)       | (a)         |
|         | TSU          | 0(0%)        | 0 (0%)        | (a)          | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0(0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0(0%)        | 0 (0%       |
|         | GUG          | 0 (0%)       | (a)           | 0 (0%)       | (a)           | (a)          | (a)          | (a)          | 0 (0%)       | (a)          | 0 (0%)       | (a)          | (a)         |
|         | LDB          | (a)          | 0 (0%)        | (a)          | (a)           | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)         |
|         | MEG          | (a)          | 0 (0%)        | (a)          | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | (a)          | 0 (0%)       | (a)          | 0(0%)        | (a)         |
|         | ANK          | 0(0%)        | (a)           | 0 (0%)       | 0 (0%)        | 0 (0%)       | (a)          | (a)          | (a)          | 0 (0%)       | 0 (0%)       | 0(0%)        | 0 (0%       |
|         | MON          | (a)          | (a)           | (a)          | (a)           | 0 (0%)       | (a)          | (a)          | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0(0%)        | 0 (0%       |
| WGBIE   | WHG          | 0(0%)        | 0 (0%)        | 0 (0%)       | (a)           | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0(0%)        | 0 (0%       |
|         | HKE          | 604<br>(29%) | 1346<br>(19%) | 557<br>(15%) | 1065<br>(25%) | 605<br>(16%) | 997<br>(13%) | 393<br>(20%) | 570<br>(34%) | 312<br>(18%) | 214<br>(31%) | 259<br>(23%) | 216<br>(28% |
|         | NEP          | 0 (0%)       | (a)           | 0 (0%)       | (a)           | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%       |
|         | POL          | 0 (0%)       | 0 (0%)        | 0 (0%)       | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | (a)          | 0 (0%       |
|         | SOL          | 0 (0%)       | (a)           | 0 (0%)       | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | (a)          | 0 (0%)       | 0 (0%)       | 0 (0%       |
|         | OUW          | 81<br>(43%)  | 36<br>(20%)   | (a)          | (a)           | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)         |
|         | SQC          | (a)          | (a)           | 0 (0%)       | (a)           | 0 (0%)       | 0 (0%)       | (a)          | (a)          | (a)          | (a)          | (a)          | (a)         |
|         | SQM          | (a)          | (a)           | 0 (0%)       | (a)           | (a)          | 0 (0%)       | 0 (0%)       | (a)          | 0 (0%)       | (a)          | 0 (0%)       | 0 (0%       |
| WGCEPH  | SQE          | (a)          | 0 (0%)        | 0 (0%)       | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%       |
|         | TDQ          | (a)          | (a)           | 0 (0%)       | (a)           | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       | (a)          | 0 (0%)       | (a)          | 0 (0%       |
|         | EOI          | (a)          | (a)           | (a)          | (a)           | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)          | (a)         |
|         | EDT          | (a)          | (a)           | (a)          | (a)           | (a)          | (a)          | (a)          | (a)          | (a)          | 0 (0%)       | 0 (0%)       | 0 (0%       |
|         | OCT          | 0 (0%)       | 0 (0%)        | 0 (0%)       | (a)           | 0 (0%)       | 0 (0%)       | 0 (0%)       | (a)          | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (09       |

| 2004   | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   | 2011   | 2012   |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | (a)    | 0 (0%) |
| (a)    |
| (a)    | (a)    | (a)    | (a)    | (a)    | (a)    | 0 (0%) | 0 (0%) | 0 (0%) |
| (a)    | 0 (0%) |
| (a)    | 0 (0%) | 0 (0%) |
| (a)    | 0 (0%) | (a)    |
| (a)    | 0 (0%) | (a)    | (a)    | 0 (0%) | 0(0%)  | (a)    | (a)    | 0 (0%) |
| (a)    | 0 (0%) | 0 (0%) |
| (a)    | (a)    | (a)    | (a)    | (a)    | 0(0%)  | 0 (0%) | 0 (0%) | 0(0%)  |
| (a)    | (a)    | (a)    | (a)    | 0(0%)  | 0(0%)  | (a)    | 0 (0%) | 0(0%)  |
| (a)    |

|         | RJC | (a)           | (a)          | (a)           | (a)           | (a)           | (a)           | (a)           | (a)           | (a)          | (a)          | (a)          | (a)          |
|---------|-----|---------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|
| WGEF    | RJM | (a)           | (a)          | (a)           | (a)           | (a)           | (a)           | (a)           | (a)           | 0 (0%)       | (a)          | 0 (0%)       | 0 (0%)       |
| WOLI    | RJU | 0 (0%)        | 0 (0%)       | 0 (0%)        | (a)           | 0 (0%)        | (a)           | 0 (0%)        | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       |
|         | SYC | (a)           | (a)          | (a)           | (a)           | (a)           | (a)           | (a)           | 111<br>(24%)  | (a)          | (a)          | 68<br>(24%)  | (a)          |
|         | DCA | (a)           | 0 (0%)       | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       |
|         | SHL | (a)           | (a)          | (a)           | 0 (0%)        | 0(0%)         | (a)           | 0 (0%)        | 0 (0%)        | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0 (0%)       |
|         | ANE | (a)           | (a)          | (a)           | (a)           | (a)           | (a)           | (a)           | (a)           | (a)          | (a)          | (a)          | (a)          |
| WGHANSA | HOM | (a)           | 61<br>(30%)  | (a)           | (a)           | (a)           | (a)           | (a)           | (a)           | (a)          | (a)          | (a)          | (a)          |
|         | PIL | 588<br>(29%)  | 295<br>(22%) | (a)           | (a)           | (a)           | (a)           | 434<br>(19%)  | 119<br>(36%)  | (a)          | (a)          | (a)          | (a)          |
| WGWIDE  | BOC | 222<br>(58%)  | (a)          | 938<br>(24%)  | 394<br>(24%)  | 225<br>(66%)  | 252<br>(60%)  | (a)           | (a)           | 48<br>(28%)  | 42<br>(37%)  | 36<br>(44%)  | (a)          |
|         | MAC | (a)           | (a)          | (a)           | 815<br>(61%)  | (a)           | (a)           | (a)           | (a)           | 482<br>(65%) | 617<br>(60%) | (a)          | (a)          |
|         | WHB | 933<br>(39%)  | (a)          | 170<br>(37%)  | (a)           | (a)           | (a)           | 418<br>(45%)  | (a)           | 191<br>(56%) | (a)          | 292<br>(33%) | 508<br>(26%) |
| WONTW   | GUR | (a)           | (a)          | (a)           | (a)           | (a)           | (a)           | (a)           | (a)           | (a)          | 29<br>(36%)  | (a)          | (a)          |
| WGNEW   | GUU | (a)           | (a)          | (a)           | (a)           | (a)           | (a)           | (a)           | (a)           | 0 (0%)       | 0 (0%)       | (a)          | (a)          |
|         | MUR | 0 (0%)        | 0(0%)        | 0 (0%)        | (a)           | 0(0%)         | 0(0%)         | (a)           | (a)           | 0 (0%)       | 0 (0%)       | 0 (0%)       | 0(0%)        |
|         | VMA | 413<br>(210%) | 463<br>(27%) | 1122<br>(35%) | 3476<br>(34%) | 4212<br>(24%) | 1844<br>(21%) | 3727<br>(31%) | 1113<br>(23%) | (a)          | 936<br>(70%) | (a)          | (a)          |
| OTHER   | BIB | (a)           | (a)          | (a)           | (a)           | (a)           | (a)           | (a)           | (a)           | (a)          | 20<br>(44%)  | (a)          | (a)          |
|         | JAA | (a)           | (a)          | 5047<br>(23%) | 9386<br>(15%) | 2844<br>(42%) | 1917<br>(37%) | 2982<br>(39%) | 375<br>(42%)  | (a)          | 305<br>(30%) | 34<br>(47%)  | (a)          |

Table 9 - Volume (in metric tons) and CVs (%, in brackets) of species in the OTB\_DEF fishery (2004-2015). See Table 1 for species codes; "(a)" = low frequency of occurrence.

| -       |                               | 1 .             |              |             |        |             |              |             |           |             |             |             |             |             |
|---------|-------------------------------|-----------------|--------------|-------------|--------|-------------|--------------|-------------|-----------|-------------|-------------|-------------|-------------|-------------|
| ICES WG | Supra-specific group          | 3-alpha<br>code | 2004         | 2005        | 2006   | 2007        | 2008         | 2009        | 2010      | 2011        | 2012        | 2013        | 2014        | 2015        |
|         | Long-finned squids            |                 | 121<br>(31%) | 39<br>(19%) | (a)    | (a)         | (a)          | (a)         | (a)       | (a)         | (a)         | (a)         | (a)         | (a)         |
|         | Squids                        | SQU             | (a)          | 0 (0%)      | 0 (0%) | 0 (0%)      | 0 (0%)       | 0 (0%)      | (a)       | (a)         | (a)         | 0 (0%)      | (a)         | (a)         |
| WOODDU  | Short-finned squids           |                 | (a)          | (a)         | 0 (0%) | (a)         | (a)          | 0 (0%)      | 0<br>(0%) | (a)         | (a)         | (a)         | (a)         | 0 (0%)      |
| WGCEPH  | Octopuses                     |                 | (a)          | (a)         | (a)    | (a)         | (a)          | (a)         | (a)       | (a)         | (a)         | (a)         | (a)         | (a)         |
|         | Cuttlefishes and<br>sepiolods |                 | (a)          | (a)         | (a)    | (a)         | (a)          | (a)         | (a)       | (a)         | (a)         | (a)         | (a)         | (a)         |
|         | Cephalopoda nei               | CEP             | 121<br>(16%) | 57<br>(28%) | (a)    | 87<br>(35%) | 140<br>(37%) | 57<br>(28%) | (a)       | 64<br>(25%) | 22<br>(26%) | 72<br>(25%) | 41<br>(36%) | 12<br>(39%) |
|         | Rajidae nei                   | RAJ             | (a)          | (a)         | (a)    | 0 (0%)      | 0 (0%)       | 0 (0%)      | (a)       | 0 (0%)      | (a)         | 0 (0%)      | (a)         | (a)         |
| WGEF    | Deep-water sharks<br>nei      | DWS             | (a)          | (a)         | (a)    | 0 (0%)      | 0 (0%)       | (a)         | 0<br>(0%) | 0 (0%)      | 0 (0%)      | 0 (0%)      | 0 (0%)      | 0 (0%)      |

2013

0 (0%)

(a)

0 (0%)

 $0\,(0\%)$ 

(a)

(a)

0 (0%)

(a)

0 (0%)

(a)

2014

0 (0%)

(a)

(a)

0 (0%)

(a)

0 (0%)

0 (0%)

0 (0%)

(a)

0 (0%)

2015

0 (0%)

(a)

(a)

0 (0%)

(a)

0 (0%)

0 (0%)

(a)

0 (0%)

0 (0%)

Table 8 (cont.) ICES WG

WGCEPH (cont.)

3-alpha code

OQD

OCC

ROA

EJE

CTC

IAR

CTL

SHO

RJN

RJH

Table 10 – Discards (in number of specimens per haul) of species in the OTB\_CRU fishery (2004-2015). See Table 1 for species codes; "---" indicates no occurrence.

|      | ARG       |       | ANI         | 3     | AN         | K     | BIB       | 6     | BOC            |         | BSF            |         | CTC        |       | CT          | L    |
|------|-----------|-------|-------------|-------|------------|-------|-----------|-------|----------------|---------|----------------|---------|------------|-------|-------------|------|
| year | Mean (sd) | range | Mean (sd)   | range | Mean (sd)  | range | Mean (sd) | range | Mean (sd)      | range   | Mean (sd)      | range   | Mean (sd)  | range | Mean (sd)   | rang |
| 2004 |           |       |             |       |            |       | 0.0 (0.4) | 0-4   | 60.7 (167.4)   | 0-1097  | 60.7 (167.4)   | 0-1097  | 0.4 (3)    | 0-31  | 7.5 (34.1)  | 0-33 |
| 2005 |           |       |             |       | 0.8 (5)    | 0-31  |           |       | 127.4 (590.8)  | 0-4386  | 127.4 (590.8)  | 0-4386  | 0.5 (4.1)  | 0.35  | 1.3 (10.8)  | 0-9  |
| 2006 |           |       | 17.5 (68.7) | 0-378 |            |       |           |       | 169.1 (387.6)  | 0-1838  | 169.1 (387.6)  | 0-1838  |            |       | 7.1 (38.2)  | 0-2  |
| 2007 |           |       | 7 (47.8)    | 0-401 | 1 (6)      | 0-38  |           |       | 687.1 (3507.4) | 0-29593 | 687.1 (3507.4) | 0-29593 | 1.3 (10.7) | 0-92  | 0.9 (5.2)   | 0-3  |
| 2008 |           |       |             |       | 2.2 (9.2)  | 0-54  |           |       | 86.2 (602.6)   | 0-4936  | 86.2 (602.6)   | 0-4936  | 0.4 (2.9)  | 0-23  | 0.7 (4.2)   | 0-2  |
| 2009 |           |       |             |       | 2.6 (13.5) | 0-89  |           |       | 306.5 (595.2)  | 0-2965  | 306.5 (595.2)  | 0-2965  | 1.3 (11.4) | 0-105 |             |      |
| 2010 |           |       |             |       | 2.6 (12.4) | 0-103 |           |       | 114 (385.1)    | 0-3082  | 114 (385.1)    | 0-3082  | 3.1 (20)   | 0-177 | 4.7 (41)    | 0-4  |
| 2011 |           |       | 5.3 (23.9)  | 0-155 |            |       |           |       | 74.9 (166.1)   | 0-776   | 74.9 (166.1)   | 0-776   | 2.4 (18)   | 0-136 | 0.4 (3)     | 0-2  |
| 2012 | 1.4 (3.4) | 0-29  |             |       |            |       |           |       | 77.6 (245.1)   | 0-1624  | 77.6 (245.1)   | 0-1624  | 1.1 (5.7)  | 0-40  | 1 (8.2)     | 0-6  |
| 2013 |           |       |             |       |            |       |           |       | 24.9 (70.8)    | 0-333   | 24.9 (70.8)    | 0-333   | 1 (3.8)    | 0-16  | 3.6 (18.6)  | 0-10 |
| 2014 |           |       |             |       | 0.4 (2.6)  | 0-17  |           |       | 261.2 () 922.6 | 0-5805  | 261.2 (922.6)  | 0-5805  |            |       | 11.9 (76.3) | 0-5  |
| 2015 |           |       |             |       | 0.6 (4.4)  | 0-32  |           |       | 34.9 (202.5)   | 0-1464  | 34.9 (202.5)   | 0-1464  |            |       | 3.3 (13.8)  | 0-7  |

|      | CYO       |       | DCA        | 1     | ED          | ſ     | EJE         |       | EOI          |       | GAG        |       | GFB           |        | GU         | Р     |
|------|-----------|-------|------------|-------|-------------|-------|-------------|-------|--------------|-------|------------|-------|---------------|--------|------------|-------|
| year | Mean (sd) | range | Mean (sd)  | range | Mean (sd)   | range | Mean (sd)   | range | Mean (sd)    | range | Mean (sd)  | range | Mean (sd)     | range  | Mean (sd)  | range |
| 2004 |           |       | 1.7 (8.7)  | 0-59  | 3.5 (27.4)  | 0-274 | 5.3 (25.4)  | 0-231 | 93.8 (149.2) | 0-779 | 2.3 (24.5) | 0-259 | 56.1 (239.2)  | 0-2216 |            |       |
| 2005 |           |       | 2.7 (16.9) | 0-144 | 6.1 (26.4)  | 0-183 | 2.5 (10.2)  | 0-62  | 28.3 (58.9)  | 0-387 | 0.8 (7.3)  | 0-63  | 29.5 (80)     | 0-599  |            |       |
| 2006 |           |       | 0.4 (2.2)  | 0-13  | 10.3 (28.6) | 0-126 | 18.9 (78.4) | 0-415 | 11.2 (20)    | 0-87  |            |       | 180.8 (812.3) | 0-4550 |            |       |
| 2007 |           |       | 1.2 (6.9)  | 0-56  | 5.1 (39.9)  | 0-342 | 1.4 (7.6)   | 0-52  | 12.9 (41.8)  | 0-318 |            |       | 61.7 (407)    | 0-3500 |            |       |
| 2008 |           |       | 2.3 (8.4)  | 0-44  | 0.2 (1.8)   | 0.15  | 2 (10.3)    | 0-77  | 5.6 (23.9)   | 0-186 |            |       | 94.4 (148.6)  | 0-823  |            |       |
| 2009 |           |       | 2.1 (16.1) | 0-146 | 1.1 (7.2)   | 0-53  | 3.3 (16.5)  | 0-119 | 4 (16)       | 0-117 |            |       | 27.9 (65.8)   | 0-421  |            |       |
| 2010 |           |       | 2.1 (17.5) | 0-175 | 5.3 (26.1)- | 0-224 | 2.1 (13.1)  | 0-96  | 4.6 (18.5)   | 0-141 |            |       | 43.9 (134.1)  | 0-912  | 0.4 (3.8)  | 0-39  |
| 2011 |           |       | 1.2 (8.7)  | 0-66  | 7.9 (24.4)  | 0-136 | 2.7 (13)    | 0-74  | 5.6 (15.8)   | 0-75  |            |       | 13.1 (33.5)   | 0-203  |            |       |
| 2012 |           |       | 6.2 (41)   | 0-336 | 1.5 (12.4)  | 0-103 | 0.4 (3.1)   | 0-26  | 8.9 (29.8)   | 0-203 |            |       | 23.3 (44.9)   | 214    | 0.2 (1.4)  | 0-12  |
| 2013 | 1.6 (5.7) | 0-25  | 9.5 (21)   | 0-70  | 1.3 (6.6)   | 0-35  |             |       | 2.6 (7.9)    | 0-32  |            |       | 13.6 (30.2)   | 0-119  |            |       |
| 2014 |           |       | 5.6 (23)   | 0-134 | 6.8 (23.5)  | 0-106 |             |       | 17.3 (35.6)  | 0-147 |            |       | 71.1 (139.7)  | 0-601  | 0.5 (3.4)  | 0-22  |
| 2015 |           |       | 0.1 (1)    | 0-7   | 1.4 (7.6)   | 0-51  |             |       | 33.4 (56.4)  | 0-262 |            |       | 107.3 (488)   | 0-3527 | 5.5 (34.9) | 0-250 |

|      | GUQ       | )     | GUF       | 2     | GUI       | J     | HKE            |         | HOM            |         | IAR         |       | JAA           |         | JAI       |       |
|------|-----------|-------|-----------|-------|-----------|-------|----------------|---------|----------------|---------|-------------|-------|---------------|---------|-----------|-------|
| year | Mean (sd) | range | Mean (sd) | range | Mean (sd) | range | Mean (sd)      | range   | Mean (sd)      | range   | Mean (sd)   | range | Mean (sd)     | range   | Mean (sd) | range |
| 2004 |           |       |           |       |           |       | 133.8 (412.7)  | 0-3655  | 0.4 (3.1)      | 0-31    | 12.1 (78.8) | 0-795 |               |         |           |       |
| 2005 |           |       |           |       |           |       | 474.4 (1121.7) | 0-6260  | 9.7 (49)       | 0-387   |             |       | 2.1 (9.6)     | 0-61    | 0.1 (1)   | 0-9   |
| 2006 |           |       |           |       | 1.2 (6.5) | 0-36  | 69.8 (142.3)   | 0-656   | 2.5 (9.3)      | 0-38    | 4.6 (24.8)  | 0-138 | 334.2 (804.7) | 0-2697  |           |       |
| 2007 |           |       |           |       |           |       | 885.9 (1791.3) | 0-12921 | 33.6 (205.1)   | 0-1710  |             |       | 77.6 (309.5)  | 0-2144  |           |       |
| 2008 |           |       |           |       |           |       | 932.9 (3285.2) | 0-19743 | 20.8 (80)      | 0-513   | 0.2 (2)     | 0-16  | 110.7 (244.8) | 0-1444  |           |       |
| 2009 | 0.7 (6.8) | 0-62  |           |       |           |       | 885.9 (1669.3) | 0-9106  | 257.9 (1523.8) | 0-13544 | 1.8 (7)     | 0-40  | 98.7 (229.5)  | 0-1417  |           |       |
| 2010 |           |       |           |       |           |       | 411.2 (883.8)  | 0-6841  | 74.9 (237.3)   | 0-1471  | 3 (16.2)    | 0-112 | 283.1 (1149)  | 0-10400 |           |       |
| 2011 |           |       |           |       |           |       | 303.3 (614.7)  | 0-3966  | 66.7 (178.6)   | 0-885   | 1 (5.7)     | 0-42  | 189.2 (646.9) | 0-4435  |           |       |
| 2012 |           |       |           |       |           |       | 159 (274.6)    | 0-1268  | 8.1 (29.5)     | 0-155   | 0.9 (7.4)   | 0-62  | 11.4 (40.8)   | 0-270   |           |       |
| 2013 |           |       | 0.2 (0.9) | 0-5   |           |       | 317.6 (580.3)  | 0-2258  | 34.2 (159.5)   | 0-857   |             |       | 8.6 (27.3)    | 0-143   |           |       |
| 2014 | 0.8 (3.5) | 0-19  |           |       |           |       | 715.2 (1014.2) | 0-4583  | 135.9 (393.1)  | 0-2333  |             |       | 105.4 (417.7) | 0-2667  |           |       |
| 2015 | 0.7 (3.7) | 0-26  |           |       |           |       | 122.5 (288.2)  | 0-1909  | 28.1 (72.9)    | 0-445   |             |       | 58.2 (228.1)  | 0-1583  |           |       |

| Ta | ble | 10 | (cont.) |
|----|-----|----|---------|
|    |     |    |         |

|      | LDB           |        | MAC           |        | ME         | G     | MO         | N     | MU         | R     | NEP           |        | OCC        |       | OCT       | 2     |
|------|---------------|--------|---------------|--------|------------|-------|------------|-------|------------|-------|---------------|--------|------------|-------|-----------|-------|
| year | Mean (sd)     | range  | Mean (sd)     | range  | Mean (sd)  | range | Mean (sd)  | range | Mean (sd)  | range | Mean (sd)     | range  | Mean (sd)  | range | Mean (sd) | range |
| 2004 | 24.5 (129.5)  | 0-1251 | 21 (169.9)    | 0-1788 |            |       | 0.1 (0.9)  | 0-9   |            |       | 44.2 (150.8)  | 0-1175 | 0.7 (5.8)  | 0-57  |           |       |
| 2005 | 9.1 (63.7)    | 0-535  | 28.3 (181.8)  | 0-1556 |            |       | 1 (6.2)    | 0-41  |            |       | 251.5 (638.3) | 0-3548 | 0.4 (3.6)  | 0-31  |           |       |
| 2006 | 118.2 (466.1) | 0-2600 | 6.5 (20.3)    | 0-88   |            |       | 0.4 (2.2)  | 0-13  |            |       | 26.9 (81.2)   | 0-379  |            |       |           |       |
| 2007 | 47.2 (298.1)  | 0-2546 | 205.8 (851.3) | 0-6014 |            |       |            |       |            |       | 5.2 (14.7)    | 0-84   |            |       |           |       |
| 2008 | 17 (134)      | 0-1097 | 14.6 (42.3)   | 0-243  |            |       | 1.3 (6.1)  | 0-38  |            |       | 27.5 (111.8)  | 0-885  | 4.1 (15.8) | 0-92  |           |       |
| 2009 | 17.4 (76.7)   | 0-604  | 1.4 (12.7)    | 0-117  | 0.4 (3.4)  | 0-32  | 4.7 (20.8) | 0-126 |            |       | 3.9 (18.3)    | 0-131  | 3.8 (27.7) | 0-252 |           |       |
| 2010 | 3.3 (13.6)    | 0-81   | 1.2 (7.6)     | 0-73   | 0.3 (3.2)  | 0-33  | 3.5 (15.8) | 0-104 | 2.5 (14.7) | 0-131 | 10.3 (38)     | 0-275  | 0.7 (5)    | 0-47  |           |       |
| 2011 | 0.9 (6.4)     | 0-48   | 56.5 (167.3)  | 0-990  |            |       | 0.7 (5.5)  | 0-42  | 0.9 (5.1)  | 0-37  | 5.3 (16.4)    | 0-106  | 0.8 (4.2)  | 0-24  | 0.9 (4.1) | 0-28  |
| 2012 | 9.1 (35.7)    | 0-214  | 42.2 (160.9)  | 0-1225 | 0.4 (3.1)  | 0-26  | 0.5 (4.4)  | 0-37  |            |       | 69.8 (235.8)  | 0-1565 | 0.7 (3.3)  | 0-19  | 0.5 (4)   | 0-33  |
| 2013 | 6.1 (24.2)    | 0-130  | 6.4 (24.8)    | 0-132  |            |       |            |       |            |       | 13.8 (38)     | 0-194  | 1.5 (5.5)  | 0-27  |           |       |
| 2014 | 17.3 (48.3)   | 0-245  | 0.6 (3.7)     | 0-25   | 2.8 (13.6) | 0-83  |            |       |            |       | 6.8 (20.1)    | 0-98   | 0.6 (3.7)  | 0-24  |           |       |
| 2015 | 11 (25.4)     | 0-117  | 12.9 (48)     | 0-275  | 3.2 (18.6) | 0-131 | 1.3 (6.4)  | 0-44  |            |       | 20.3 (56.7)   | 0-279  | 0.4 (2.9)  | 0-21  | 1.4 (8.2) | 0-5   |

|      | OMZ       | 2     | OQD       |       | ORY        |       | OU         | W     | PIL       |       | PLS        |       | RJC        |       | RJ         | Н     |
|------|-----------|-------|-----------|-------|------------|-------|------------|-------|-----------|-------|------------|-------|------------|-------|------------|-------|
| year | Mean (sd) | range | Mean (sd) | range | Mean (sd)  | range | Mean (sd)  | range | Mean (sd) | range | Mean (sd)  | range | Mean (sd)  | range | Mean (sd)  | range |
| 2004 |           |       | 0.2 (1.6) | 0-17  | 0.1 (1)    | 0-11  |            |       | 0.1 (1.5) | 0-16  | 1.1 (11.4) | 0-120 | 0.1 (1.1)  | 0-11  | 0.5 (5.4)  | 0-57  |
| 2005 |           |       |           |       |            |       |            |       |           |       |            |       | 0.7 (3.7)  | 0-26  |            |       |
| 2006 |           |       |           |       |            |       |            |       |           |       |            |       |            |       |            |       |
| 2007 |           |       |           |       | 1.9 (16.2) | 0.139 |            |       |           |       |            |       | 0.4 (3.8)  | 0-33  |            |       |
| 2008 |           |       |           |       | 0.3 (2.8)  | 0-23  |            |       |           |       |            |       | 0.8 (4.6)  | 0-35  | 0.5 (4.3)  | 0-35  |
| 2009 |           |       |           |       |            |       |            |       |           |       |            |       | 3 (27.4)   | 0-252 |            |       |
| 2010 |           |       |           |       |            |       |            |       |           |       |            |       | 5.4 (33.4) | 0-272 |            |       |
| 2011 | 0.2 (1.4) | 0-10  |           |       |            |       |            |       |           |       |            |       | 7.1 (41.9) | 0-305 | 1.4 (10.1) | 0-76  |
| 2012 |           |       |           |       |            |       | 2.5 (15.5) | 0-119 |           |       |            |       |            |       |            |       |
| 2013 |           |       |           |       |            |       | 19.2 (66)  | 0-344 |           |       |            |       |            |       |            |       |
| 2014 |           |       |           |       |            |       | 2 (12.6)   | 0-83  |           |       |            |       | 0.5 (3.3)  | 0-22  |            |       |
| 2015 |           |       |           |       | 1.9 (9.5)  | 0-49  | 1.8 (12.7) | 0-92  |           |       |            |       |            |       |            |       |

|      | RJI       |       | RJM        |       | RJN       |       | RJC       | )     | RJY        | 7     | RNO       | 3     | ROA          |        | SB        | R     |
|------|-----------|-------|------------|-------|-----------|-------|-----------|-------|------------|-------|-----------|-------|--------------|--------|-----------|-------|
| year | Mean (sd) | range | Mean (sd)  | range | Mean (sd) | range | Mean (sd) | range | Mean (sd)  | range | Mean (sd) | range | Mean (sd)    | range  | Mean (sd) | range |
| 2004 | 0.5 (3.8) | 0-38  |            |       | 0.3 (2.2) | 0-23  |           |       | 1.1 (11.2) | 0-119 | 0.7 (7.1) | 0-75  | 17.3 (43)    | 0-284  |           |       |
| 2005 | 1.6 (10)  | 0-72  |            |       |           |       | 0.2 (2.1) | 0-18  |            |       | 0.2 (2)   | 0-17  | 39 (132.8)   | 0-1085 |           |       |
| 2006 |           |       |            |       |           |       |           |       |            |       | 1.2 (6.6) | 0-37  | 37.7 (117.1) | 0-650  |           |       |
| 2007 |           |       |            |       |           |       | 0.5 (3)   | 0-21  |            |       | 7 (53)    | 0-454 | 19.9 (48.8)  | 0-276  | 0.3 (2.5) | 0-21  |
| 2008 |           |       |            |       |           |       |           |       | 0.5 (4.3)  | 0-35  |           |       | 16.8 (70.1)  | 0-548  |           |       |
| 2009 |           |       | 2.3 (14.9) | 0-105 | 0.1 (1.1) | 0-10  |           |       |            |       |           |       | 25.7 (76.3)  | 0-635  |           |       |
| 2010 |           |       | 0.2 (2.3)  | 0-24  | 0.9-(8.9) | 0-91  |           |       |            |       |           |       | 27.8 (225.7) | 0-2294 | 0.5 (4.8) | 0-49  |
| 2011 |           |       |            |       |           |       |           |       |            |       | 0.4 (2.9) | 0-22  | 1.6 (6.2)    | 0-35   |           |       |
| 2012 |           |       |            |       |           |       | 0.5 (4.1) | 0-34  |            |       |           |       | 13.6 (55.7)  | 0-410  | 0.4 (3.5) | 0-29  |
| 2013 |           |       |            |       |           |       |           |       |            |       |           |       | 19.2 (52.4)  | 0-270  |           |       |
| 2014 |           |       |            |       |           |       |           |       |            |       |           |       | 12 (33.7)    | 0-158  |           |       |
| 2015 |           |       |            |       |           |       |           |       |            |       |           |       | 2 (6.9)      | 0-31   |           |       |

| 52 |
|----|
|----|

Table 10 (cont.)

|      | SCK       |       | SDU        | J     | SHL          |       | SHO           | )      | SOI       | Ľ     | SQC       |       | SQE        |       | SQN         | 4     |
|------|-----------|-------|------------|-------|--------------|-------|---------------|--------|-----------|-------|-----------|-------|------------|-------|-------------|-------|
| year | Mean (sd) | range | Mean (sd)  | range | Mean (sd)    | range | Mean (sd)     | range  | Mean (sd) | range | Mean (sd) | range | Mean (sd)  | range | Mean (sd)   | range |
| 2004 |           |       |            |       |              |       | 213.7 (800.6) | 0-7777 |           |       |           |       | 2.9 (26.1) | 0-275 | 1.3 (5.1)   | 0-34  |
| 005  | 1.1 (9.8) | 0-84  |            |       |              |       | 191.5 (341.4) | 0-1496 |           |       |           |       | 0.4 (3.8)  | 0-33  | 4.7 (12.8)  | 0-67  |
| 2006 |           |       |            |       |              |       | 245.8 (929.4) | 0-5200 |           |       |           |       |            |       | 2.9 (15.7)  | 0-88  |
| :007 |           |       |            |       |              |       | 98.8 (385.4)  | 0-3182 |           |       |           |       |            |       | 0.6 (3.1)   | 0-18  |
| 2008 |           |       |            |       |              |       | 26.1 (61.2)   | 0-347  |           |       |           |       | 0.2 (1.4)  | 0-12  | 0.3 (2.6)   | 0-22  |
| :009 | 0.7 (6.7) | 0-61  |            |       |              |       | 20.1 (47.3)   | 0-263  |           |       |           |       |            |       | 0.6 (5.4)   | 0-50  |
| 010  |           |       |            |       | 0.8 (8)      | 0-81  | 44.8 (131.5)  | 0-830  |           |       | 0.2 (2.5) | 0-26  |            |       | 5 (21.7)    | 0-18  |
| 011  |           |       | 0.8 (5.8)  | 0-43  |              |       | 24.5 (60.6)   | 0-267  |           |       | 0.2 (1.7) | 0-13  |            |       | 20.1 (69.7) | 0-40  |
| 012  |           |       |            |       | 0.8 (4.9)    | 0-37  | 72.5 (124)    | 0-552  |           |       |           |       | 0.5 (2.9)  | 0-18  | 0.3 (1.7)   | 0-1   |
| 013  |           |       |            |       |              |       | 53.6 (146)    | 0-769  |           |       |           |       |            |       |             |       |
| 014  |           |       | 5.9 (37.8) | 0-247 | 20.7 (126.5) | 0-828 | 183.1 (599.9) | 0-3207 |           |       |           |       | 0.8 (5.4)  | 0-35  | 1.5 (9.3)   | 0-6   |
| 015  |           |       | 1.9 (13.6) | 0-98  | 3.3 (23.4)   | 0-168 | 44.2 (96.8)   | 0-633  | 0.1 (1)   | 0-7   |           |       |            |       |             |       |

|      | SQU        |       | SYC          | 2     | SYR        |       | TD          | Q     | TO        | E     | TSU        |       | TTO       | )     | TT        | R     |
|------|------------|-------|--------------|-------|------------|-------|-------------|-------|-----------|-------|------------|-------|-----------|-------|-----------|-------|
| year | Mean (sd)  | range | Mean (sd)    | range | Mean (sd)  | range | Mean (sd)   | range | Mean (sd) | range | Mean (sd)  | range | Mean (sd) | range | Mean (sd) | range |
| 2004 |            |       | 12.2 (31.5)  | 0-182 | 3.7 (32.2) | 0-337 | 10.8 (26)   | 0-179 |           |       | 3 (31.9)   | 0-337 | 0.1 (0.6) | 0-7   |           |       |
| 2005 |            |       | 14.3 (42.5)  | 0-268 | 0.9 (7.7)  | 0-67  | 9.6 (34.6)  | 0-207 |           |       | 2.8 (13.9) | 0-85  |           |       |           |       |
| 2006 |            |       | 17.8 (88.4)  | 0-492 |            |       |             |       |           |       | 1.7 (8.9)  | 0-50  |           |       |           |       |
| 2007 |            |       | 22 (54.1)    | 0-311 |            |       | 0.3 (2.2)   | 0-19  |           |       |            |       |           |       | 0.5 (3.8) | 0-33  |
| 2008 |            |       | 5.7 (17.6)   | 0-81  |            |       | 0.3 (2.3)   | 0-19  |           |       | 1.4 (9)    | 0-71  |           |       |           |       |
| 2009 |            |       | 25.5 (76.3)  | 0-518 | 0.5 (4.5)  | 0-41  |             |       |           |       |            |       |           |       |           |       |
| 2010 | 8.9 (54.7) | 0-518 | 28.6 (86.5)  | 0-789 |            |       | 1.3 (9.5)   | 0-77  |           |       | 0.4 (3.8)  | 0-39  |           |       |           |       |
| 2011 | 0.3 (2.3)  | 0-17  | 43.8 (116)   | 0-839 |            |       | 11.1 (41.4) | 0-229 |           |       |            |       |           |       |           |       |
| 2012 | 0.7 (4)    | 0-28  | 12.7 (49.5)  | 0-351 | 0.1 (1.2)  | 0-10  |             |       | 0.8 (4.6) | 0-30  | 1 (6.5)    | 0-52  |           |       |           |       |
| 2013 |            |       | 5.3 (20)     | 0-95  |            |       | 0.6 (2.9)   | 0-16  |           |       |            |       |           |       |           |       |
| 2014 | 0.5 (3.2)  | 0-21  | 47.2 (129.7) | 0-750 |            |       | 7 (37.8)    | 0-244 |           |       | 2.3 (11.6) | 0-73  |           |       |           |       |
| 2015 | 3.2 (17.6) | 0-125 | 9.3 (22.3)   | 0-131 |            |       |             |       |           |       |            |       |           |       | 1 (7.1)   | 0-51  |

|      | TTV       |       | VM           | A      | WHB             |         |
|------|-----------|-------|--------------|--------|-----------------|---------|
| year | Mean (sd) | range | Mean (sd)    | range  | Mean (sd)       | range   |
| 2004 |           |       | 7.2 (37)     | 0-358  | 2473.4 (5364.2) | 0-35768 |
| 2005 |           |       | 7.7 (46)     | 0-387  | 701.6 (1410.7)  | 0-7420  |
| 2006 | 1.4 (7.5) | 0-42  | 50.2 (210)   | 0-1148 | 1538.3 (3274.2) | 0-16250 |
| 2007 |           |       | 50.4 (302.3) | 0-2573 | 784.3 (2078.2)  | 0-12410 |
| 2008 |           |       | 30.2 (62.2)  | 0-305  | 260.3 (518.6)   | 0-3910  |
| 2009 |           |       | 10.4 (42.6)  | 0-283  | 528.5 (1074.5)  | 0-6961  |
| 2010 | 0.2 (1.9) | 0-20  | 46.7 (150.7) | 0-1333 | 974.6 (1709.3)  | 0-13290 |
| 2011 |           |       | 55.3 (201.3) | 0-1299 | 1063.1 (1569.6) | 0-6559  |
| 2012 | 0.2 (1.3) | 0-11  | 14.3 (53.2)  | 0-312  | 499.7 (1243.6)  | 0-8274  |
| 2013 |           |       | 6.7 (25.7)   | 0-125  | 1859.1 (4522.6) | 0-2333  |
| 2014 | 0.6 (3.8) | 0-25  | 14.6 (66.1)  | 0-432  | 844.4 (1339)    | 0-5222  |
| 2015 |           |       | 14 (49.6)    | 0-333  | 1153.7 (1691.8) | 0-9938  |

Table 11 - Discards (in number of specimens per haul) of species in the OTB\_DEF fishery (2004-2015). See Table 1 for species codes; "---" indicates no occurrence.

|      | ANE          |        | ANF       | K     | ARC        | 3     | BIB            |         | BOO             | 2       | BSF       |       | CTC        |       | CT         | Ĺ     |
|------|--------------|--------|-----------|-------|------------|-------|----------------|---------|-----------------|---------|-----------|-------|------------|-------|------------|-------|
| year | Mean (sd)    | range  | Mean (sd) | range | Mean (sd)  | range | Mean (sd)      | range   | Mean (sd)       | range   | Mean (sd) | range | Mean (sd)  | range | Mean (sd)  | range |
| 2004 | 13.2 (106.2) | 0-1184 |           |       |            |       | 28.7 (109.4)   | 0-822   | 531.8 (3175.8)  | 0-32590 | 0.4 (3.6) | 0-37  | 0.3 (3.2)  | 0-37  | 4 (24.4)   | 0-199 |
| 2005 | 13.6 (57.6)  | 0-416  | 0.1 (1.5) | 0-20  |            |       | 12.4 (46.9)    | 0-454   | 148 (588.1)     | 0-5782  | 1 (10.1)  | 0-121 | 0.5 (4.1)  | 0-44  |            |       |
| 2006 | 12.5 (51.9)  | 0-546  |           |       |            |       | 1.8 (10.8)     | 0-121   | 1310.8 (3926.1) | 0-34733 | 0.9 (8.3) | 0-109 | 1.5 (10.8) | 0-101 | 1.4 (19.5) | 0-273 |
| 2007 | 102 (598.3)  | 0-6443 |           |       |            |       | 1.2 (13.3)     | 0-168   | 613.6 (3112.3)  | 0-37181 |           |       | 1.4 (13)   | 0-140 | 0.4 (4.5)  | 0-58  |
| 2008 | 5.4 (21.4)   | 0-169  |           |       |            |       | 287.2 (1058.7) | 0-5737  | 598.6 (2364.3)  | 0-23407 |           |       | 1.1 (9.4)  | 0-94  |            |       |
| 2009 | 17.1 (70.2)  | 0-493  | 0.6 (6.3) | 0-73  |            |       | 352.9 (2249.1) | 0-19539 | 621.1 (2940.8)  | 0-30655 |           |       | 4.3 (34.5) | 0-387 |            |       |
| 2010 | 14.4 (49)    | 0-223  | 0.3 (3.3) | 0-37  |            |       | 12.3 (51.6)    | 0-429   | 130.5 (441.2)   | 0-3186  |           |       | 0.1 (1.6)  | 0-18  | 0.8 (7.7)  | 0-85  |
| 2011 | 28.6 (105.2) | 0-782  | 0.6 (4.1) | 0-29  |            |       | 12.7 (65.4)    | 0-569   | 177.3 (642.1)   | 0-3640  |           |       |            |       | 1 (5.7)    | 0-42  |
| 2012 | 0.1 (0.7)    | 0-6    |           |       | 0.2 (1.7)  | 0-14  | 39.1 (125.9)   | 0-714   | 126.4 (573.3)   | 0-4431  |           |       |            |       |            |       |
| 2013 | 1.1 (5.3)    | 0-31   |           |       |            |       | 45.0 (113.1)   | 0-523   | 156.5 (646.6)   | 0-4309  |           |       | 0.8 (5.5)  | 0-39  |            |       |
| 2014 | 14.3 (84.2)  | 0-603  |           |       |            |       | 12.3 (66.5)    | 0-477   | 384.4 (1723.5)  | 0-12379 |           |       | 1.1 (8.2)  | 0-60  |            |       |
| 2015 | 1.2 (8)      | 0-56   |           |       | 1.9 (12.9) | 0-90  | 334.7 (2029.7) | 0-14216 | 224.8 (928)     | 0-6303  |           |       | 0.2 (1.3)  | 0-9   |            |       |

|      | DCA       |       | EDT       |       | EJE          |        | EOI        |       | GFB        |       | GUG        | ł     | GUF          | 2      | GUI          | J      |
|------|-----------|-------|-----------|-------|--------------|--------|------------|-------|------------|-------|------------|-------|--------------|--------|--------------|--------|
| year | Mean (sd) | range | Mean (sd) | range | Mean (sd)    | range  | Mean (sd)  | range | Mean (sd)  | range | Mean (sd)  | range | Mean (sd)    | range  | Mean (sd)    | range  |
| 2004 | 0.1 (0.8) | 0-9   | 0.2 (2.3) | 0-26  | 11.2 (30.1)  | 0-152  | 7.4 (24.5) | 0-185 | 2.4 (12.3) | 0-106 |            |       |              |        | 1.7 (14.3)   | 0-156  |
| 2005 |           |       | 0.5 (4.5) | 0-52  | 22.1 (62.3)  | 0-381  | 7.1 (20)   | 0-101 |            |       | 0.2 (2.5)  | 0-31  |              |        | 5.4 (65.2)   | 0-825  |
| 2006 |           |       | 0.3 (3.5) | 0-41  | 4.4 (20.5)   | 0-185  | 3.2 (12.7) | 0-89  | 1.6 (12.7) | 0-140 |            |       |              |        | 3 (14.9)     | 0-115  |
| 2007 |           |       | 1.8 (9.9) | 0-83  | 4.9 (21.9)   | 0-189  | 2.1 (11.2) | 0-88  | 0.3 (2.5)  | 0-25  | 0.2 (2.6)  | 0-33  |              |        | 1.5 (15.7)   | 0-198  |
| 2008 |           |       | 0.8 (8)   | 0-89  | 9.1 (30.5)   | 0.231  | 2.7 (13.8) | 0-103 |            |       | 3.9 (33.4) | 0-268 |              |        | 17.5 (123.1) | 0-1066 |
| 2009 |           |       | 0.5 (4.4) | 0-49  | 25.5 (167.6) | 0-1869 | 6.7 (28.5) | 0-231 | 1.5 (10.2) | 0-106 | 2.8 (17.8) | 0-160 | 2.7 (14.2)   | 0-112  | 0.3 (2.1)    | 0-19   |
| 2010 |           |       | 0.8 (7.6) | 0-82  | 1.1 (7.4)    | 0-64   | 5.3 (27.2) | 0-256 | 0.5 (3.9)  | 0-36  | 1.3 (14.1) | 0-158 | 5.3 (33)     | 0-286  | 0.8 (5.2)    | 0-51   |
| 2011 |           |       | 0.4 (2.4) | 0-19  | 2.3 (11)     | 0-84   | 1.5 (7.3)  | 0-52  |            |       |            |       | 4.6 (22)     | 0-184  | 5.6 (27.9)   | 0-213  |
| 2012 |           |       | 0.2 (1.5) | 0-12  |              |        | 1.2 (7.2)  | 0-54  |            |       | 2.3 (14.2) | 0-110 | 25 (111.1)   | 0-709  |              |        |
| 2013 |           |       |           |       |              |        | 0.1 (0.4)  | 0-3   | 0.1 (0.4)  | 0-3   |            |       | 59.7 (230.3) | 0-1593 |              |        |
| 2014 |           |       |           |       |              |        | 2.7 (14)   | 0-87  |            |       | 2.7 (11.3) | 0-56  | 19.2 (42.7)  | 0-155  | 11.1 (43.4)  | 0-230  |
| 2015 |           |       |           |       |              |        | 3.2 (13.8) | 0-80  | 0.4 (2.8)  | 0-20  | 6.1 (41.7) | 0-292 | 4.9 (17.2)   | 0-85   | 0.4 (2.7)    | 0-19   |

|      | HKE             |         | HOM            |         | IAR         |       | JAA              |          | JAI        |       | LDB         |        | MAC             |         | ME        | G     |
|------|-----------------|---------|----------------|---------|-------------|-------|------------------|----------|------------|-------|-------------|--------|-----------------|---------|-----------|-------|
| year | Mean (sd)       | range   | Mean (sd)      | range   | Mean (sd)   | range | Mean (sd)        | range    | Mean (sd)  | range | Mean (sd)   | range  | Mean (sd)       | range   | Mean (sd) | range |
| 2004 | 430.2 (1383.4)  | 0-13307 | 8.3 (42.6)     | 0-409   | 6.8 (26.5)  | 0-199 | 3.3 (20.5)       | 0-204    | 1.4 (8.9)  | 0-90  | 2.1 (15.7)  | 0-129  | 43.4 (136.6)    | 0-850   | 0.4 (3.8) | 0-42  |
| 2005 | 837 (1660.1)    | 0-12202 | 950.2 (6979.9) | 0-83224 | 3.6 (19.5)  | 0-148 | 267.9 (1432.7)   | 0-12866  | 0.1 (1.5)  | 0-19  |             |        | 29.7 (135.4)    | 0-1308  |           |       |
| 2006 | 364.5 (639.7)   | 0-5934  | 16.1 (90)      | 0-1115  | 0.1 (1.6)   | 0-22  | 4911.4 (22874.2) | 0-299819 | 2.2 (15.5) | 0-186 | 24 (115.3)  | 0-1023 | 65.4 (385.5)    | 0-4080  | 0.1 (1.4) | 0-20  |
| 2007 | 607.4 (1520.4)  | 0-15621 | 4.5 (39.7)     | 0-495   | 2.3 (19.2)  | 0-174 | 4244 (8645.6)    | 0-58721  | 1.1 (8.6)  | 0-93  | 4.8 (22.6)  | 0-173  | 437.5 (1930.7)  | 0-16744 |           |       |
| 2008 | 459 (1246.2)    | 0-11752 | 14.2 (67.2)    | 0-652   | 3.1 (19.1)  | 0-154 | 1597 (5669)      | 0-40546  |            |       | 1.1 (7.7)   | 0-77   | 103.7 (558.2)   | 0-4650  |           |       |
| 2009 | 1394.5 (4607.4) | 0-44321 | 32.8 (179.3)   | 0-1743  | 10.5 (63.7) | 0-606 | 861.8 (2169.4)   | 0-12946  | 0.1 (1.1)  | 0-13  | 4.2 (23.3)  | 0-190  | 193.3 (957.5)   | 0-7960  |           |       |
| 2010 | 362.2 (617)     | 0-5049  | 40.8 (217)     | 0-2216  | 0.9 (9.5)   | 0-107 | 1416.6 (4870.5)  | 0-43755  | 0.7 (5)    | 0-43  | 5.3 (46.4)  | 0-509  | 288.5 (1307.8)  | 0-7425  |           |       |
| 2011 | 427.1 (780)     | 0-4520  | 8.6 (57)       | 0-498   |             |       | 184.2 (694.9)    | 0-5605   |            |       | 5.7 (20)    | 0-122  | 299.3 (2213.1)  | 0-20150 | 1.3 (12)  | 0-110 |
| 2012 | 575.2 (1267)    | 0-7795  | 4.7 (20.3)     | 0-147   | 0.2 (1.1)   | 0-7   | 150.1 (697.2)    | 0-4386   |            |       | 4.6 (33.2)  | 0-259  | 1020.4 (5406.9) | 0-40388 |           |       |
| 2013 | 193.1 (423.5)   | 0-2555  | 273.4 (1799)   | 0-12859 | 0.3 (2.4)   | 0-17  | 456.8 (1069.2)   | 0-5303   |            |       | 12.7 (54.8) | 0-328  | 597.7 (2683.7)  | 0-18836 | 0.6 (4.4) | 0-31  |
| 2014 | 340.2 (625.7)   | 0-2538  | 36.7 (162.5)   | 0-1144  |             |       | 66.1 (190)       | 0-999    | 2.9 (11.4) | 0-65  | 6.5 (22.2)  | 0-119  | 1425.7 (6607.5) | 0-40787 |           |       |
| 2015 | 365 (774.7)     | 0-4274  | 3.2 (15.4)     | 0-100   |             |       | 282.7 (1439.4)   | 0-9927   |            |       | 7.6 (28.6)  |        | 9.4 (35.8)      | 0-171   | 1 (7)     | 0-49  |

|--|

|      | MON        | 1     | MUR       | 1     | NE         | Р     | OCC          |        | OC        | Т     | OQD       |       | OUW           | /      | PIL            |         |
|------|------------|-------|-----------|-------|------------|-------|--------------|--------|-----------|-------|-----------|-------|---------------|--------|----------------|---------|
| year | Mean (sd)  | range | Mean (sd) | range | Mean (sd)  | range | Mean (sd)    | range  | Mean (sd) | range | Mean (sd) | range | Mean (sd)     | range  | Mean (sd)      | range   |
| 2004 | 0.2 (2.2)  | 0-25  |           |       |            |       | 0.9 (10.1)   | 0-114  |           |       |           |       |               |        | 301.8 (895.4)  | 0-7009  |
| 2005 | 0.3 (3.5)  | 0-44  |           |       | 1.4 (17.1) | 0-216 | 1.8 (8.5)    | 0-65   |           |       |           |       |               |        | 222.4 (576.3)  | 0-5242  |
| 2006 | 0.4 (5)    | 0-70  |           |       |            |       | 1.9 (11.4)   | 0-123  |           |       |           |       |               |        | 572.2 (3660.7) | 0-48376 |
| 2007 | 0.3 (3.1)  | 0-35  | 0.3 (3.8) | 0-49  | 0.1 (1)    | 0-12  | 13.5 (142.7) | 0-1817 | 0.7 (8.7) | 0-111 |           |       |               |        | 131.1 (740)    | 0-8832  |
| 2008 |            |       |           |       |            |       | 20 (66.7)    | 0-455  |           |       |           |       |               |        | 231.7 (832.7)  | 0-5821  |
| 2009 | 2.7 (22.6) | 0-211 |           |       |            |       | 11.9 (58)    | 0-592  |           |       |           |       |               |        | 76.7 (415.9)   | 0-4607  |
| 2010 | 0.6 (3.8)  | 0-31  | 0.6 (6.6) | 0-74  |            |       | 1.6 (13.9)   | 0-147  |           |       |           |       |               |        | 471 (1156.4)   | 0-7906  |
| 2011 |            |       | 0.9 (7.8) | 0-71  |            |       | 4.5 (15.3)   | 0-83   | 0.1 (1.2) | 0-11  | 0.1 (0.9) | 0-8   |               |        | 171.4 (521.4)  | 0-3399  |
| 2012 |            |       |           |       |            |       | 3.5 (14.8)   | 0-102  |           |       |           |       | 119.9 (819.2) | 0-6379 | 114.3 (784.7)  | 0-6131  |
| 2013 |            |       |           |       |            |       | 6.6 (16.8)   | 0-70   |           |       |           |       | 37.7 (228.7)  | 0-1628 | 130.4 (508.5)  | 0-2880  |
| 2014 |            |       |           |       |            |       | 3.3 (13.1)   | 0-77   |           |       |           |       | 1.4 (9.8)     | 0-72   | 247.5 (1654)   | 0-12052 |
| 2015 |            |       |           |       |            |       | 0.9 (3.4)    | 0-16   |           |       |           |       | 4.6 (22.9)    | 0-141  | 6.4 (20.8)     | 0-110   |

|      | POL        |       | RJC        |       | RJI       | E     | RJH        | [     | RJM        |       | RJN        |       | RJO       |       | RЛ        | J     |
|------|------------|-------|------------|-------|-----------|-------|------------|-------|------------|-------|------------|-------|-----------|-------|-----------|-------|
| year | Mean (sd)  | range | Mean (sd)  | range | Mean (sd) | range | Mean (sd)  | range | Mean (sd)  | range | Mean (sd)  | range | Mean (sd) | range | Mean (sd) | range |
| 2004 |            |       | 3.3 (15.2) | 0-129 |           |       | 1.3 (7.5)  | 0-54  | 0.1 (1.6)  | 0-18  | 0.3 (3.1)  | 0-35  |           |       |           |       |
| 2005 |            |       | 0.6 (4.3)  | 0-40  | 0.2 (2.3) | 0-29  | 0.4 (3.6)  | 0-33  | 0.3 (2.6)  | 0-29  | 0.2 (2.5)  | 0-32  |           |       |           |       |
| 2006 |            |       | 2.7 (14.9) | 0-155 |           |       | 1.3 (10.3) | 0-109 | 0.4 (3.2)  | 0-29  | 1.2 (8.8)  | 0-103 |           |       |           |       |
| 2007 |            |       | 4.8 (18.6) | 0-141 |           |       | 0.1 (0.7)  | 0-8   | 0.1 (1.3)  | 0-16  | 0.8 (7.2)  | 0-82  |           |       | 0.1 (0.8) | 0-10  |
| 2008 |            |       | 2.1 (10.7) | 0-82  |           |       |            |       | 1.6 (11.7) | 0-113 | 2.3 (18.5) | 0-160 |           |       |           |       |
| 2009 |            |       | 1.4 (7.4)  | 0-71  |           |       |            |       | 0.2 (2)    | 0-19  |            |       |           |       | 0.2 (1.8) | 0-21  |
| 2010 |            |       | 2.8 (13.7) | 0-107 |           |       | 0.2 (2.7)  | 0-31  | 0.7 (6)    | 0-64  |            |       | 0.1 ()1.1 | 0-12  |           |       |
| 2011 |            |       | 3.5 (11.8) | 0-83  |           |       |            |       | 0.6 (3.8)  | 0-29  |            |       |           |       |           |       |
| 2012 |            |       | 1.2 (7.3)  | 0-54  |           |       |            |       |            |       |            |       |           |       |           |       |
| 2013 |            |       | 1.9 (8.7)  | 0-55  |           |       | 0.4 (2.9)  | 0-21  | 0.7 (4.9)  | 0-35  |            |       |           |       |           |       |
| 2014 | 3.2 (22.9) | 0-165 | 3.6 (14)   | 0-91  |           |       |            |       |            |       | 2.4 (12)   | 0-65  |           |       |           |       |
| 2015 |            |       | 1.9 (10.5) | 0-73  |           |       |            |       |            |       |            |       |           |       |           |       |

| -    | ROA        |       | SBR       |       | SHC         | )     | SOL       |       | SQC        |       | SQE        |       | SQM        | [     | SQU         | U     |
|------|------------|-------|-----------|-------|-------------|-------|-----------|-------|------------|-------|------------|-------|------------|-------|-------------|-------|
| year | Mean (sd)  | range | Mean (sd) | range | Mean (sd)   | range | Mean (sd) | range | Mean (sd)  | range | Mean (sd)  | range | Mean (sd)  | range | Mean (sd)   | range |
| 2004 | 0.3 (3.6)  | 0-41  |           |       | 14.4 (82.9) | 0-812 |           |       | 7.6 (83.6) | 0-939 | 1.2 (13.9) | 0-156 | 7.7 (26.2) | 0-188 | 0.4 (4.5)   | 0-50  |
| 2005 | 3.3 (20.3) | 0-216 |           |       | 8.1 (73.9)  | 0-963 | 0.4 (3.3) | 0-35  |            |       |            |       | 2.6 (23.3) | 0-290 |             |       |
| 2006 | 0.3 (3.3)  | 0-36  | 0.5 (5.3) | 0-72  | 1.8 (10.1)  | 0-109 |           |       |            |       |            |       |            |       |             |       |
| 2007 | 1.8 (9.9)  | 0-73  | 0.3 (2.5) | 0-24  | 2.1 (13.7)  | 0-115 |           |       | 0.1 (1.6)  | 0-21  |            |       | 0.5 (4.7)  | 0-58  |             |       |
| 2008 | 0.3 (2.2)  | 0-23  |           |       | 0.7 (6.5)   | 0-68  |           |       |            |       |            |       | 0.2 (2.1)  | 0-23  |             |       |
| 2009 | 0.4 (5.1)  | 0-60  |           |       | 2.7 (27.8)  | 0-321 |           |       |            |       |            |       |            |       |             |       |
| 2010 |            |       |           |       | 5.7 (57.1)  | 0-637 |           |       | 0.8 (6.5)  | 0-63  |            |       |            |       | 0.8 (6.4)   | 0-64  |
| 2011 |            |       |           |       |             |       |           |       | 3.7 (17.3) | 0-122 |            |       | 0.7 (4.7)  | 0-36  | 8.3 (48.4)  | 0-432 |
| 2012 |            |       |           |       |             |       | 0.9 (6.9) | 0-54  | 2.2 (16.6) | 0.130 |            |       |            |       | 1.5 (10.9)  | 0-85  |
| 2013 |            |       |           |       | 0.6 (4.1)   | 0-29  |           |       | 9.8 (35.9) | 0-220 |            |       | 0.8 (5.4)  | 0-38  |             |       |
| 2014 | 1.2 (6)    | 0-37  |           |       |             |       |           |       |            |       |            |       |            |       | 13.7 (77.9) | 0-563 |
| 2015 | 1 (7)      | 0-49  |           |       | 3.1 (21)    | 0-147 |           |       |            |       |            |       |            |       | 13.9 (83.9) | 0-584 |

| Table | 11 | (cont.) |
|-------|----|---------|
|       |    |         |

|      | SYC         |       | TDQ        |       | TSU       |       | VMA             |         | WHB             |         | WHG       |       |
|------|-------------|-------|------------|-------|-----------|-------|-----------------|---------|-----------------|---------|-----------|-------|
| year | Mean (sd)   | range | Mean (sd)  | range | Mean (sd) | range | Mean (sd)       | range   | Mean (sd)       | range   | Mean (sd) | range |
| 2004 | 12.1 (33.7) | 0-207 | 6.1 (37.4) | 0-388 |           |       | 266.8 (953.7)   | 0-8032  | 929.1 (3794.4)  | 0-29195 |           |       |
| 2005 | 14 (59.3)   | 0-698 | 1.9 (17.4) | 0-216 |           |       | 353.4 (1404)    | 0-12236 | 487.4 (2340.3)  | 0-17469 |           |       |
| 2006 | 16 (61.7)   | 0-734 |            |       | 0.1 (1.8) | 0-25  | 1015.5 (3564.9) | 0-24688 | 434.9 (2528.6)  | 0-27962 |           |       |
| 2007 | 17.6 (55.6) | 0-380 | 0.7 (8.7)  | 0-111 |           |       | 1218.7 (3073.8) | 0-26405 | 248.8 (1159.1)  | 0-12833 | 0.1 (1.8) | 0-23  |
| 2008 | 23.7 (59.4) | 0-422 |            |       |           |       | 2091 (4838)     | 0-34187 | 26.6 (83.2)     | 0-479   |           |       |
| 2009 | 15.3 (42)   | 0-266 |            |       |           |       | 1395.8 (4595.5) | 0-36464 | 619.2 (2996.7)  | 0-24880 |           |       |
| 2010 | 12.7 (39.1) | 0-335 |            |       |           |       | 4127.9 (9210.3) | 0-37845 | 1133.4 (4367.7) | 0-31342 |           |       |
| 2011 | 36.7 (76.6) | 0-547 |            |       |           |       | 614.7 (1191.6)  | 0-5613  | 233.5 (706.3)   | 0-3616  |           |       |
| 2012 | 8.6 (20.2)  | 0-102 | 0.2 (1.8)  | 0-14  |           |       | 314.6 (896.8)   | 0-4633  | 459.3 (1648.7)  | 0-11832 |           |       |
| 2013 | 17.5 (46)   | 0-231 |            |       |           |       | 375.1 (980.2)   | 0-5405  | 519 (2281.1)    | 0-12290 |           |       |
| 2014 | 34.5 (66.5) | 0-282 | 8.9 (45.7) | 0-324 |           |       | 10 (50)         | 0-359   | 774.2 (3357.1)  | 0-22728 |           |       |
| 2015 | 13.4 (38)   | 0-179 |            |       |           |       | 49.7 (238.2)    | 0-1590  | 1141.7 (2085.4) | 0-11520 |           |       |

**Table 12** – Summary of onboard sampled species lengths from discards in the OTB\_CRU fishery, during the period 2004-2015; in bold, number of measured individuals (n) above 200; SD: Standard Deviation See Table 1 for species codes.

| Table 13 - Summary of onboard sampled species lengths from    |
|---------------------------------------------------------------|
| discards in the OTB_DEF fishery, during the period 2004-2015; |
| in bold, number of measured individuals (n) above 200; SD:    |
| Standard Deviation. See Table 1 for species codes.            |

|         |             |           | Mean              | SD       | Range            |
|---------|-------------|-----------|-------------------|----------|------------------|
|         | code<br>BSF | 20        | 56.2              | 13.8     | 30-87            |
|         | RNG         | 15        | 7.0               | 4.6      | 4-23             |
|         | ORY         | 11        | 8.2               | 1.8      | 5-12             |
| WGDEEP  | SBR         | 4         | 21.5              | 2.4      | 20-25            |
|         | GFB         | 966       | 17.3              | 7.0      | 6-67             |
|         | TSU         | 17        | 11.1              | 9.7      | 2.5-42           |
|         | LDB         | 415       | 13.3              | 4.8      | 4-77             |
|         | MEG         | 11        | 11.0              | 2.5      | 7-15             |
|         | ANK         | 23        | 23.5              | 10.8     | 5-44             |
| WGBIE   | MON         | 24        | 22.7              | 16.7     | 5-70             |
|         | HKE         | 8880      | 18.1              | 5.2      | 4-48             |
|         | NEP         | 1535      | 26.1              | 4.1      | 9-70             |
|         | SOL         | 1         | 14.0              |          | 14               |
|         | OUW         | 2         | 5.5               | 0.7      | 5-6              |
|         | SQC         | 2         | 12.0              | 11.3     | 4-20             |
|         | SQM         | 77        | 15.7              | 8.5      | 4.5-40.5         |
|         | OMZ         | 1         | 27.0              |          | 27               |
|         | SQE         | 13        | 15.8              | 10.7     | 3.5-30           |
|         | TDQ         | 106       | 9.5               | 4.9      | 2.5-29           |
| WGCEPH  | EOI         | 787       | 8.0               | 2.2      | 2-22.5           |
|         | EDT         | 98        | 7.5               | 2.0      | 3.5-11.5         |
|         | OQD         | 1         | 10                |          | 10               |
|         | OCC         | 27<br>279 | 9.4<br><b>4.0</b> | 3<br>2.2 | 4-15.5<br>0.5-25 |
|         | ROA<br>EJE  | 84        | 4.0<br>4.8        | 0.8      | 3-7              |
|         | CTC         | 84<br>19  | 5.2               | 2.0      | 1.5-10           |
|         | IAR         | 62        | 5.5               | 1.6      | 2.5-12.5         |
|         | GUQ         | 7         | 32.0              | 6.5      | 20-39            |
|         | CYO         | 4         | 39.3              | 8.5      | 35-52            |
|         | SCK         | 2         | 51.5              | 3.5      | 49-54            |
|         | GAG         | 8         | 17.3              | 4.6      | 13-25            |
|         | SHO         | 2185      | 23.5              | 10.5     | 5-86             |
|         | RJN         | 6         | 13.3              | 2.6      | 9-16             |
|         | SMD         | 1         | 48.0              |          | 48               |
|         | RJH         | 3         | 18.3              | 7.6      | 13-27            |
|         | RJC         | 23        | 21.5              | 8.7      | 12-44            |
|         | RJM         | 3         | 33.0              | 11.5     | 24-46            |
|         | SYC         | 467       | 29.3              | 12.4     | 4-60             |
| WGEF    | RJY         | 5         | 20.3              | 7.9      | 14-32            |
| 11 OLI  | RJO         | 4         | 22.3              | 3.8      | 19-26            |
|         | RJI         | 9         | 20.6              | 6.8      | 12-32            |
|         | JAI         | 1         | 12.0              |          | 12               |
|         | PLS         | 3<br>2    | 35.7              | 8.1      | 27-43<br>21-65   |
|         | TTR<br>TTO  | 1         | 43.0<br>29.0      | 31.1     | 21-65            |
|         | TTV         | 4         | 29.0              | 1.7      | 25-29            |
|         | GUP         | 6         | 44.8              | 41.9     | 17-127           |
|         | DCA         | 101       | 32.2              | 10.6     | 17-90            |
|         | SDU         | 5         | 28.4              | 2.2      | 25-31            |
|         | SHL         | 23        | 11.3              | 8.4      | 2.5-24           |
|         | SYR         | 10        | 42.7              | 14.9     | 11.5-62          |
|         | ANE         | 47        | 15.0              | 1.3      | 12-17.5          |
| WGHANSA | HOM         | 658       | 27.1              | 4.6      | 5-40             |
|         | PIL         | 1         | 20.0              |          | 20               |
| WGWIDE  | BOC         | 3240      | 11.3              | 1.4      | 1.5-15.5         |
|         | MAC         | 632       | 21.8              | 3.0      | 14-33            |
|         | WHB         | 21591     | 20.7              | 4.2      | 9-38             |
| WGNEW   | GUR         | 1         | 15.0              |          | 15               |
|         | GUU         | 1         | 22.0              |          | 22               |
|         | MUR         | 7         | 23.1              | 3.0      | 20-28            |
|         | BIB         | 2         | 24.5              | 0.7      | 24-25            |
|         | JAA         | 1394      | 22.3              | 5.2      | 11-45            |
| OTHER   | VMA         | 420       | 25.0              | 3.7      | 16-42            |

| ICES WG | 3-alpha<br>code | n     | Mean | SD   | Range    |
|---------|-----------------|-------|------|------|----------|
|         | BSF             | 10    | 56.1 | 13.0 | 40-79    |
|         | ARG             | 2     | 15.5 | 0.7  | 15-16    |
| WGDEEP  | SBR             | 6     | 17.5 | 2.6  | 15-21    |
|         | GFB             | 39    | 19.9 | 6.7  | 9-32     |
|         | TSU             | 1     | 13.0 |      | 13       |
|         | GUG             | 53    | 17.5 | 3.7  | 11-27    |
|         | LDB             | 196   | 14.2 | 3.7  | 7-31     |
|         | MEG             | 10    | 16.9 | 3.3  | 12-22    |
|         | ANK             | 6     | 31.7 | 14.1 | 15-52    |
| WGBIE   | MON             | 10    | 31.6 | 19.4 | 11-80    |
|         | WHG             | 1     | 19.0 |      | 19       |
|         | HKE             | 19424 | 17.1 | 5.2  | 3-50     |
|         | POL             | 6     | 9.7  | 0.8  | 9-11     |
|         | SOL             | 4     | 17.5 | 8.8  | 10-30    |
|         | SQM             | 49    | 10.6 | 3.7  | 5-29     |
|         | SQE             | 4     | 10.9 | 2.5  | 7.5-13   |
|         | TDQ             | 31    | 9.4  | 5.3  | 3.5-34   |
|         | EOI             | 135   | 6.7  | 2.2  | 3-15     |
|         | EDT             | 23    | 6.7  | 1.2  | 5-9.5    |
| WGCEPH  | OQD             | 1     | 5.5  |      | 5.5      |
|         | OČC             | 141   | 7.9  | 2.3  | 2.5-13   |
|         | ROA             | 27    | 3.6  | 1.2  | 1-5.5    |
|         | EJE             | 336   | 4.0  | 1.3  | 1.5-16.5 |
|         | CTC             | 37    | 4.5  | 1.7  | 1.5-10   |
|         | IAR             | 104   | 5.3  | 1.6  | 2.5-12.5 |
|         | SHO             | 118   | 28.7 | 9.2  | 15-45    |
|         | RJN             | 17    | 37.0 | 9.8  | 19-51    |
|         | RJH             | 20    | 35.4 | 10.5 | 20-60    |
|         | RJC             | 99    | 31.3 | 8.6  | 17-55    |
|         | RJM             | 20    | 33.2 | 9.0  | 13-50    |
| WGEF    | RJU             | 2     | 18.0 | 5.7  | 14-22    |
|         | SYC             | 695   | 34.2 | 7.8  | 8-54     |
|         | RJO             | 1     | 46.0 |      | 46       |
|         | RJE             | 1     | 23.0 |      | 23       |
|         | JAI             | 29    | 31.9 | 8.7  | 12-51    |
|         | DCA             | 1     | 49.0 |      | 49       |
|         | ANE             | 483   | 15.0 | 1.8  | 1.5-18.5 |
| WGHANSA | HOM             | 3597  | 10.9 | 3.3  | 5-36     |
|         | PIL             | 7443  | 18.5 | 2.1  | 7.5-25   |
| WGWIDE  | BOC             | 12648 | 11.0 | 1.5  | 3-19.5   |
|         | MAC             | 4231  | 21.7 | 2.7  | 11-42    |
|         | WHB             | 14880 | 17.1 | 2.6  | 5-33     |
| WGNEW   | GUR             | 186   | 17.9 | 4.3  | 10-31    |
|         | GUU             | 133   | 14.7 | 5.2  | 4-27     |
|         | MUR             | 4     | 17.0 | 3.9  | 12-21    |
|         | BIB             | 2559  | 11.9 | 2.6  | 4-26     |
| OTHER   | JAA             | 25219 | 18.2 | 3.4  | 4-42     |
|         | VMA             | 20849 | 21.3 | 2.8  | 12-43    |

