RELATÓRIOS DE CAMPANHA

IBERIA-FORAMS 2012

Antje H. L. Voelker, David Bell e Paulo Oliveira

Edição IPMA Rua C – Aeroporto de Lisboa 1749-007 LISBOA Portugal

Edição Digital Anabela Farinha

Capa Anabela Farinha

Disponíveis no sitio web do IPMA http://ipma.pt/pt/publicacoes/index.jsp

Todos os direitos reservados

Referência Bibliográfica

VOELKER, A. H. L.; BELL, D.; OLIVEIRA, P., 2014. IBERIA-FORAMS Setembro 2012 *Relatórios de Campanha*, 33p.

EUROFLEETS Cruise Summary Report

IBERIA-FORAMS

R/V Garcia del Cid, Cruise Iberia-Forams

10.09.2012 – 16.09.2012 Vigo (Spain) – Huelva (Spain)

Antje H. L. Voelker

With contributions by David Bell (University Edinburgh) and Paulo Oliveira (IPMA, Lisbon)

2012

IPMA Marine Geology Group Report No. 1/2012

Page

Table of Content

1	Summary	3						
2	Research objectives							
3	Narrative of the Cruise	5						
4	Preliminary Results	9						
	4.1 Water and Phytoplankton Sampling with CTD/ Rosette	9						
	4.1.1 Sampling for Stable Isotopes	17						
	4.1.2 Filtering for Coccolithophorids	17						
	4.1.3 pH Measurements	17						
	4.2 Zooplankton Sampling with Hydrobios Multi-Net	18						
	4.2.1 Foraminifer Sampling for Molecular Phylogeny Study	18						
5	Data and Sample Storage	20						
6	Participants	20						
7	Station List	21						
8	Acknowledgements	21						
9	References	22						
10	Annexes	23						
	10.1 Depths and comments for seawater stable isotope samples	24						
	10.2 Detailed Information for Multi-Net samples	27						
	10.3 Detailed Information for Plankton Filter Samples	29						
	10.4 Seawater pH Values	31						

1 Summary

The Iberia-Forams cruise on R/V Garcia del Cid started in Vigo (Spain) on September 10th, 2012 and ended in Huelva (Spain) in the morning of September 16th, 2012. Along the cruise track (Fig. 1.1) CTD profiles and seawater samples were collected at 12 stations. Multiple opening closing plankton net (Multi-Net) hauls for plankton ecology studies were performed at 10 of those stations. At stations 3, 5, 7, 9, 10, and 12 an additional Multi-Net haul was executed to retrieved planktonic foraminifers for molecular phylogeny studies.

Multi-sensor CTD profiles were done until close to the seafloor (depth range of 324 – 2559 m). Measured parameters include temperature, pressure, salinity, flourescence, oxygen content, and turbidity. The seawater samples, collected primarily for stable isotope analyses, cover the complete water column and sample all the water masses identified at the respective station. Thermocline and flourescence maxima depths encountered during the cruise were relative shallow and indicate that none of the stations sampled an upwelling event (Fig. 2.1b). Seawater samples from the upper 300 m were filtered to collect coccolithophorids. For all seawater samples the pH was determined as onboard measurement.

Fig. 1.1 Cruise track (until early afternoon of September 15th) and stations of R/V Garcia del Cid Cruise Iberia-Forams.

Multi-Net hauls covered water depths from 800 m upward, but at most stations the hauls were shallower (see section 7). The uppermost net always encompassed the flourescence maximum. Planktonic foraminifer abundances (as observed in the molecular phylogeny samples) are relative low and, in accordance with the prevailing hydrographic conditions, contain several subtropical species.

2 Research Programme/Objectives

The western Iberian margin is an eastern boundary upwelling system and during the upwelling season, i.e. May to late September/ early October, upwelling plumes and filaments can reach 200 km offshore (Sousa and Bricaud 1992; Haynes et al., 1993). Plankton studies in this region concentrated on the phytoplankton groups (coccolithophorids, diatoms; e.g., Abrantes and Moita, 1999), copopods or mero-zooplankton (Villa et al., 1997; Queiroga et al., 2005; Stehle et al., 2007). No data exists for planktonic foraminifers or pteropods and the samples collected during the cruise will finally provide one snapshot into their abundance and diversity during the upwelling season. We will also study the genetic diversity of some of the planktonic foraminifers as it is now known that many species have more than one genotype with the species *Globigerina bulloides* and *Neogloboquadrina pachyderma/ Neogloboquadrina incompta* having at least 7 genotypes (e.g., Darling and Wade, 2008).

Because we will collect more seawater than needed for the stable isotope studies water (see below) collected from the upper 300 m will be filtered for coccolithophorids. Furthermore, as a contribution to future studies on ocean acidification in the region we will measure the pH in all seawater samples.

Although planktonic foraminifers are an essential tool in paleoceanographic studies, we still rely on insights from sediment surface samples (e.g., Salgueiro et al., 2008), which integrate signals over a number of years and seasons, for interpreting data along the Iberian margin. So besides faunal and genetic diversity the planktonic foraminifer shells collected during the cruise will also be used for stable isotope analyses. Recent studies have shown that we need regional and species-specific calibrations for stable isotope or trace element data analysed in the carbonate of the foraminiferal shells (e.g., Mulitza et al., 2003; Wilke et al., 2009). For establishing a regional calibration a direct comparison between isotopic values measured in the seawater, in which the respective foraminifer species built its shell, with those analysed in the carbonate shell is essential. Consequently, seawater samples will be collected for stable isotope (δ^{18} O, δ D, δ^{13} C-DIC) analyses from depths covering the complete water column but with special attention to the watermass structure in the upper 500 m.

Planned stations (Fig. 2.1a) are distributed along the western Iberian margin and include the re-occupation of the study site of the CALIBERIA project (Salgueiro et al., 2012) on the shelf edge off Vigo and of OVIDE 2010 transect stations 3 and 6 at 40.3°N. Additional stations shall collect data and samples at the positions of IODP Sites U1385 and U1387 (Expedition 339 Scientists, 2012) thereby allowing relating the water column data to the porewater and micropaleontological studies underway at these sites.

Fig. 2.1 Satellite sea surface temperature (SST) distribution in the working area prior to (a; 3rd September) and during the cruise (b; averaged for 10th – 15th September). Note the difference in SST scales for both maps. Black symbols and numbers indicate planned (a) and executed (b) stations. [Maps provided by Paulo Oliveira, IPMA]

3 Narrative of the Cruise

R/V Garcia del Cid left Vigo harbor on September 10th, 2012 just after 1 pm with a group of 7 scientists on board. Work at the first station began at 4:22 pm under an overcast sky and with an low amplitude swell. Station Iberia-Forams (Ib-F) 1 occupied the position of the station where monthly seawater samples were collected for the Portuguese-Spanish CALIBERIA project (Salgueiro et al., 2012). This station was also set as test station since most science party members had no previous experience with CTD/ Rosette or Multi-Net operations and sample collecting. Because of a communication problem during the first Multi-Net haul a second haul was necessary and we left the station at 8 pm. Ib-F station 2, located further offshore, was reached at 9:16 pm with rain showers and swell conditions similar to station Ib-F 1. The first CTD deployment had to be abandoned during the descend at 1200 m because of sensor problems (batteries need to be replaced). The second CTD/ Rosette deployment went down to 1757 m water depth. At this station a minimum of two Multi-Net hauls was

planned. However, problems in retrieving the basket with the collector cups from the sea after the first haul led to all five plankton nets and one of the collector cups being damaged. Because the tears in the nets could not be repaired in a short time, allowing for additional hauls, the station was abandoned at 2:30 am on September 11th, 2012 with a southern course.

Work at station Ib-F 3 started on September 11th at 8:45 am with the CTD/ Rosette deployment. Sea conditions were good with only some low amplitude swell. The sky was overcast with the sun appearing in the afternoon. The CTD/Rosette was back on board at 10:20 am. Because the plankton nets needed to be repaired by attaching patches of mesh material by hand stitching (Fig. 3.1) prior to deployment, the first Multi-Net haul started only at 12:17 pm and collected material at five levels from 500 m upward. The first haul collected material for the molecular phylogeny study allowing as much time as possible for the microscope work under the relative stable sea conditions at station. For the second (ecology) Multi-Net haul the depth interval of the two deeper nets was changed to 600-400 and 400-200 m, respectively, while the upper nets samples the same depth intervals as the molecular phylogeny study haul. Work at station 3 was completed at 3:00 pm.

Fig. 3.1 Iberia-Forams team members (from left to right: Blanca Ausin, Dave Bell, Andreia Rebotim) at work repairing the plankton nets.

Because of the delay already incurred during the cruise and to ensure that important stations on the southern margin could be sampled, work at station Ib-F 4 was limited to the CTD/Rosette cast. This station re-occupied the position of OVIDE 2010 transect station 3, for which the PI, Antje Voelker, has seawater samples for stable isotope studies. Re-occupation and sampling at this location will therefore allow an interannual comparison. Under calm sea conditions the CTD/Rosette cast started at 8:42 pm on

September 11th and ended at 9:40 pm. To save further time the position of the following station, Ib-F 5, was moved closer to shore therefore re-occupying OVIDE 2010 station 5 instead of station 6 as initially planned. At this station a full program with a CTD/ Rosette and two Multi-Net hauls was executed. As on the previous station sea conditions were good with a low amplitude swell. During the station work the ship drifted slowly southward with the current (see Station List; section 7). Station work started at 10:43 pm on September 11th with the CTD/ Rosette cast down to 2420 m. The ecology study Multi-Net haul sampled five levels between 700 m and the sea surface between 1:27 and 2:35 am on September 12th. The molecular phylogeny related Multi-Net haul sampled depths between 400 and 0 m between 3:12 and 3:47 am. The station work was completed at 4:02 am on September 12th and the ship moved southward in direction of planned station 7 because planned station 6 (Fig. 2.1a) is located too far offshore for safe working condition with R/V Garica del Cid, in particular since the forecast indicated increasing swell heights for the southwestern Iberian margin during the next two days.

Work at station Ib-F 6, located at the southern edge of the Estremadura promontory north of Lisbon, started at 2:00 pm on September 12th with sunny skies and low amplitude swell. After 4:00 pm, however, winds picked up with white caps becoming common and swell amplitude increasing. The CTD/ Rosette cast went down to 1217 m and was back on board at 3:06 pm. Because of the increased turbidity in the water column the winch cable suffered some contursions during the CTD/ Rosette cast. So to remove the contursions the winch cable needed to be unrolled and rolled up again interrupting the station work for 2 hours. During the work on the winch cable the ship drifted with the current southward. Because of the deteriorating sea conditions it was decided not to reposition the ship but to do the Multi-Net haul at the position where the work on the winch ended, i.e. about 3 minutes further to the south as the CTD/ Rosette cast. The Multi-Net haul sampled depths from 540 m upward between 5:07 and 6:13 pm. During the haul, the plankton net sampling the interval between 340 and 240 m suffered a big tear making this net unusable for future hauls. R/V Garcia del Cid left the station at 6:15 pm.

Because of the relative strong winds and a swell of more than 1.5 m height the planned order of stations had to be revised. High winds and swell were forecast for the Sines coast for the whole day of September 13th. The ship left station Ib-F 6 initially in direction of planned station 9, i.e. the position of IODP Site U1385 (Expedition 339 Scientists, 2012), but soon changed direction toward planned station 10, i.e. the position of IODP Site U1391 located closer to the coast (Fig. 1.1). In the early morning hours of September 13th it became, however, apparent that none of the Sines coast stations could be sampled and that station work would only be possible on the southern coast. The ship therefore moved to planned station 12 (Fig. 2.1a) on the Algarve shelf.

Work at station Ib-F 7 began on September 13th at 8:15 am under sunny skies. Some swell and a few white caps occurred but did not affect the station work. The CTD/ Rosette cast down to 410 m ended at 8:51 am when the equipment was back on deck. The first Multi-Net haul, now with only four nets and thus sampling only four intervals, collected material for the molecular phylogeny study for four depth intervals between

300 m and the surface between 9:20 am and 10:00 am. The second haul, performed between 10:20 and 10:56 am, collected material from the same levels as for the previous haul but this time for the ecology study. At 10:59 am R/V Garcia del Cid left the station on way to station Ib-F 8.

Station Ib-F 8 is located near the southwestern corner of the working area of the EUROFLEETS IMPACT proposal and cruise (PI M. Castro) allowing a comparison between the planktonic foraminifer species found in the plankton nets and the surface and subsurface sediments collected during the IMPACT cruise. The CTD/ Rosette cast down to 571 m was executed between 3:01 and 3:38 pm under warm and sunny skies. Sea conditions were good with low amplitude swell and only very few white caps. The Multi-Net haul started at 4:11 pm and ended at 4:55 pm. At 5:00 pm the ship left the station in direction of the last station along the Algarve shelf. Station Ib-F 9 was reached at 6:50 pm just after sunset. Sea conditions were similar as at station Ib-F 8, but the surface current was felt more strongly with the ship drifting eastward during hauls (the ship was repositioned after each haul). Station Ib-F 9 is positioned at the location of IODP Site U1387 (Expedition 339 Scientists, 2012). The CTD/ Rosette cast started at 6:57 pm and went down to 541 m. The first Multi-Net haul for collecting material for the genotype study between 360 m and the sea surface started at 8:00 pm and ended at 8:43 pm. The ecology-related haul was executed between 9:11 and 10:02 pm and started sampling material at 460 m depth. At 10:06 pm the ship left for the next station.

The position of Station Ib-F 10 was changed from the location of planned station 13 and moved eastward to reduce sailing time and gain shiptime to sample at least one station off the Sines coast. The position of station Ib-F 10 was reached at 3:35 am on September 14th. Under calm and warm sea and weather conditions the CTD/ Rosette cast started at 3:49 am and ended at 5:55 am. The cast reached a maximum water depth of 1924 m. The first Multi-Net hauls was aimed for the molecular phylogeny study and sampled between depths between 400 m and the sea surface between 6:20 and 7:05 am. The plankton net sampling the deeper interval became, however, unzipped, so that no sample was recovered. There was only few material caught in the deeper nets of this haul, so that it was decided to reduce the number of hauls for the ecological study to just one haul that would sample depths from 800 m upward. This second Multi-Net, the deepest one performed during the whole cruise, started at 7:26 am and ended at 8:50 am with the upper two nets sampling the same levels as the uppermost nets of the genotype haul. The ship left the station at 8:53 am in direction of the Sines coast.

Because of participants' travel arrangements made prior to the delay in the cruise's start and the last minute change in the arrival harbor, R/V Garcia del Cid had to arrive in Huelva by 8 am on Sunday, September 16^{th} , as the latest. Within the remaining cruise time only two additional stations were feasible for sure. On the other hand, for the porewater study at IODP Site U1385 (planned station 9) that is performed by Iberia-Forams co-proponent David Hodell (UK) it was important to obtain data from this offshore station. So the decision was made to steam offshore to the position of IODP Site U1385 but to limit the work to the CTD/ Rosette cast. R/V Garcia del Cid arrived at Iberia-Forams Station 11 at 11:53 pm on September 14^{th} . Under good sea conditions with a swell of 0.5 - 1m, no white caps and a sea surface temperature of 23.8°C the

CTD/ Rosette cast started at 11:55 pm on the 14th and ended at 2:38 am on the 15th. During the cast down to 2545 m and the subsequent upcast the ship drifted from the position of 37°34.10'N 10° 7.21'W to 37° 33.25'N 10° 6.41'W. At 2:39 am the ship left the station in a southeastward direction because it was decided locating the last station of the cruise offshore Cape São Vicente (see below) thereby abandoning sampling at the position of IODP Site U1391 (planned station 10; Fig 2.1a).

Because of the poor success so far in sampling upwelling phenomena and therefore collecting *Globigerina bulloides* specimens for the molecular phylogeny study the last station was positioned off Cape São Vicente where the satellite SST data from September 3rd (Fig. 2.1a) indicated colder temperature and therefore some upwelling. The Cape São Vicente region is a busy ship traffic area with regulated traffic lanes. The station was therefore positioned between the major lanes and thereby a bit further offshore than might have been ideal based on the SST data shown in Fig. 2.1b. Station work at Iberia-Forams station 12 started at 9:21 am on September 15th with the CTD/ Rosette cast down to 1032 m under sunny skies and swell conditions similar to the previous station. The first Multi-Net haul sampled depth from 400 m upward for the molecular phylogeny study. The second Multi-Net collected material from 550 m upward for the ecology study. The station work was completed at 12:48 pm on September 15th and R/V Garcia del Cid left in direction of Huelva. The ship docked in Huelva at 8 am on September 16th with the taxi picking up the Spanish cruise participants already waiting on the dock.

4 Preliminary Results

4.1 Water and Phytoplankton Sampling with CTD/Rosette

CTD measurements were performed with the UTM-CSIC's Seabird-CTD-system SBE 11 plus V5.1g down to about 10 m above the seafloor at each station. Data was recorded for the following parameters (sensor information given in brackets) during the down- and upcasts, respectively:

- Pressure [Digiquartz with TC 0814]
- Temperature [Temperature sensor 03P4553]
- Conductivity [Conductivity Sensor 043120]
- Oxygen [SBE 43 Sensor 0915]
- Flourescence [Flouro Seapoint Sensor]
- Turbidity [OBS Seapoint Turbidity Sensor]
- Beam transmission [Wet Labs C-Star CST-974 DR]
- PAR/ Irradiance [Biosperical Licor Chelsea Sensor 70160]

Water depth, salinity and density, calculated based on some of those parameters, were also part of the CTD output data.

The CTD system was mounted on a Rosette with 12 bottles of 10 liter capacity (see photo on cover). Water sampling was done during the upcast at levels defined based on the downcast CTD profiles (see depths of pH values in Figures 4.1 - 4.12; Annex 10.1). Water sample cover the various water masses and hydrographic conditions encountered at each station (see also comments in Annex 10.1).

Fig. 4.2CTD profile data –Temperature (red), Salinity (blue), Oxygen (purple), Flourescence (green),
Turbidity (black)– and pH values (orange) for discrete seawater samples at station Ib-F 2.

At all stations sampled during the Iberia-Forams cruise the flourescence maximum and the seasonal thermocline occurred within the upper 50 to 90 m (Fig. 4.1 - 4.12) indicating that none of the stations encountered upwelling conditions, in agreement with the satellite SST data (Fig. 2.1b). Temperatures in the upper water column were relatively warm in accordance with the absence of upwelling and with the observation that the North Atlantic was unusually warm during September 2012 (Fig. 4.13; NOAA-NCDC State of the Climate Global Analysis Report for September 2012 at http://www.ncdc.noaa.gov/sotc/global/2012/9). Subsurface temperature maxima below the seasonal thermocline at stations Ib-F 6 to 12 and potentially also the more northern stations might be related to North Atlantic Central Water (NACW) of the subtropical variety. Below this level, NACW of the subpolar variety, associated with a high oxygen content, is found with the related temperature minimum being located between 400 and 500 m, respectively, at most stations (Fig. 4.1 – 4.12).

Fig. 4.3 CTD profile data –Temperature (red), Salinity (blue), Oxygen (purple), Flourescence (green), Turbidity (black)– and pH values (orange) for discrete seawater samples at station Ib-F 3.

At the deeper stations, with the exception of Ib-F 10, the two cores (upper = U; lower = L) of the Mediterranean Outflow Water (MOW) can clearly be distinguished in the temperature and salinity profiles. Beneath the lower MOW core, the mixing zone between the MOW and the North Atlantic Deep Water (NADW) is visible in the profiles of stations Ib-F 2, 3, 5, 10, and 11. The presence of NADW at these deeper stations is clearly indicated by the decrease in temperature and salinity and the contemporary increase in oxygen content. The combined temperature minimum and oxygen maximum

Fig. 4.5CTD profile data –Temperature (red), Salinity (blue), Oxygen (purple), Flourescence (green),
Turbidity (black)– and pH values (orange) for discrete seawater samples at station Ib-F 5.

around 1660 m at station Ib-F 2 (Fig. 4.2) might be related to the presence of Labrador Sea Water.

Increased trubidity, unrelated to the flourescence maximum and the associated plankton biomass, was observed at station lb-F 1 in the bottom layer (lower 100 m; Fig. 4.1); at station lb-F 6 below 200 m (Fig. 4.6); at station lb-F 7 in the lower 100 m with a prominent peak above the seafloor (Fig. 4.7); at station lb-F 8 thoughout the water column (Fig. 4.8); at station lb-F 9 in the bottom layer above the seafloor (Fig. 4.9); and at station lb-F 11 between 700 and 800 m (Fig. 4.11). The increased trubidity observed in the water column at station lb-F 8 might be related to sediment mobilization caused by deep-sea trawling that is done in this region (two fishing boats were actively trawling in the region during the time of the station work). The trubidity peaks at stations lb-F 9 and lb-F 11 are related to sediment remobilization by the upper MOW core. The MOW is also contributing to the increased trubidity in the lower water column at station lb-F 8 and might cause the bottom layer peak at station lb-F 7.

Fig. 4.6 CTD profile data –Temperature (red), Salinity (blue), Oxygen (purple), Flourescence (green), Turbidity (black)– and pH values (orange) for discrete seawater samples at station Ib-F 6.

Fig. 4.7 CTD profile data –Temperature (red), Salinity (blue), Oxygen (purple), Flourescence (green), Turbidity (black)– and pH values (orange) for discrete seawater samples at station Ib-F 7.

Fig. 4.8 CTD profile data –Temperature (red), Salinity (blue), Oxygen (purple), Flourescence (green), Turbidity (black)– and pH values (orange) for discrete seawater samples at station Ib-F 8, i.e. the station near the EUROFLEETS IMPACT cruise working area.

Fig. 4.10 CTD profile data –Temperature (red), Salinity (blue), Oxygen (purple), Flourescence (green), Turbidity (black)– and pH values (orange) for discrete seawater samples at station Ib-F 10.

Fig. 4.11 CTD profile data –Temperature (red), Salinity (blue), Oxygen (purple), Flourescence (green), Turbidity (black)– and pH values (orange) for discrete seawater samples at station Ib-F 11.

Fig. 4.12 CTD profile data –Temperature (red), Salinity (blue), Oxygen (purple), Flourescence (green), Turbidity (black)– and pH values (orange) for discrete seawater samples at station Ib-F 12.

Fig. 4.13 Land and Ocean temperature anomalies during September 2012 presented as percentiles. Source: NOAA-NCDC State of the Climate Global Analysis Report for September 2012 at http://www.ncdc.noaa.gov/sotc/global/2012/9

4.1.1 Sampling for Stable Isotopes

From each Rosette bottle 10 cc of seawater were collected in a glass vial for parallel δ^{18} O/ δ D measurements. In a second glass vial 50 cc were collected for the $\delta^{13}C_{DIC}$ analysis. Each $\delta^{13}C_{DIC}$ sample was poisoned with 0.1 ml of concentrated Mercury Chloride solution and then stored in a Zarges box. During the cruise the δ^{18} O/ δ D samples were stored in the refrigirator to minimize evaporation. After the cruise all samples were stored in the cold storage room of IPMA's Marine Geology Group.

4.1.2 Filtering for Coccolithophorids

Approximately 5 liters of seawater were collected from selective Rosette bottles that sampled depths in the uppermost 300 m of the water column at all Iberia-Forams stations (Annex 10.3). Between 2.5 and 3.6 liters were filtered through mixed cellulose ester membrane filters of 47 mm diameter and with a pore size of 0.45 μ m to collect coccolithophorids. Each filter was stored in plastic petri dishes (bottom and lid) and later-on on land dried in the respective laboratory (Ib-F 1 filters in Alfragide; all others in Salamanca).

4.1.3 pH Measurements

At all stations seawater was collected from each Rosette bottle for pH measurements. The seawater was filled into 250 ml plastic bottles whose lid was closed tightly right after filling. The bottles were brought into the wet lab where the pH measurements were done as soon as possible to minimize exchange with the air. For the pH measurement a WTW (Wissenschaftlich-Technische Werkstaetten GmbH) pH meter 3110 was used. The pH probe was calibrated with solutions of 4.01 and 7.00 and has an accuracy of \leq 0.005 pH ± 1 digit. For measuring the pH value of a seawater sample the probe was inserted into the bottom half of each bottle and the value noted down when the reading was stabalized. For each sample two measurements were done (Annex 10.4). A third measurement was added, if the first two values differed significantly. Values plotted in Figures 4.1 to 4.12 are the mean of the respective measurements (Annex 10.4).

Measured pH values range from 8.027 to 8.275 with higher values generally observed in the upper water column. Highest surface water pH levels were found in the Gulf of Cadiz surface waters (stations Ib-F 7 and Ib-F 9). The measured surface water pH values are in the range of those observed near Bermuda and the Canary Islands (Bindoff et al., 2007) and in the Rockall Through (McGarth et al., 2012). Values measured in the NADW levels are, however, higher than those observed by McGarth et al. (2012) in their Rockall Trough timeseries.

4.2 Zooplankton Sampling with Hydrobios Multi-Net Plankton Sampler

A Hydrobios multiple opening closing net type Maxi (see photo on cover) was used to collect samples of planktonic organisms by vertical hauls (100- μ m mesh size, 50 x 50 cm² opening; winch speed of 0.8 m/s). At stations Ib-F 1-3, 5 and 6 five depth intervals were sampled with the uppermost net sampling across the flourescence maximum (Annex 10.2). At station Ib-F 6 one of the plankton nets was damaged beyond repair. As consequence only four depth intervals could be sampled at the subsequent stations. Samples from Multi-Net hauls for the ecological study were preserved in formol and buffered with Hexamethylenetetramine for a pH value of 8.2. Residues from the plankton nets collected for the molecular phylogeny study were treated the same way.

Based on the catches in the plankton nets collected for the phylogeny study planktonic foraminifer abundances are relative low throughout. On the other hand, in accordance with the warm surface waters observed in the CTD data and Figure 2.1b, tropical species such as *Globigerinoides sacculifer* were observed as far north as 41°N (Iberia-Forams station 3).

4.2.1 Foraminifer Sampling for Molecular Phylogeny Study

Multi-Net hauls to collect specimens for the molecular phylogeny study were done at 6 stations (see Annex 10.2). The depth intervals for at least the uppermost two plankton nets were the same for the phylogenic as for the ecological Multi-Net haul.

Collection and shipboard preparation of the selected specimens followed the protocol established in Prof. Kate Darling's laboratory. No specimens were collected from the plankton nets at Iberia-Forams station 9 (all samples preserved for ecological study) because the species did not differ from those collected at station Ib-F 7. The species and respective number of specimens collected at each station are listed below.

Station Iberia-Forams 3

- 10 crushed *Globorotalia scitula* (initially identified as *G. hirsuta*) preserved in DOC buffer and taken from 90-200 m depth.
- 9 whole *Globorotalia scitula* (initially identified as *G. hirsuta*) preserved in Urea buffer and taken from 90-200 m depth.
- 11 crushed *Neogloboquadrina pachyderma* right coiling (= *N. incompta*) preserved in DOC buffer and taken from 0-30 and 90-200 m depth, respectively.

Station Iberia-Forams 5

- 15 crushed *Globorotalia inflata* preserved in DOC buffer and taken from 100-200 m depth.
- 10 whole *Globorotalia inflata* preserved in Urea buffer and taken from 50-100 m depth.
- 10 crushed *Neogloboquadrina pachyderma* right coiling (= *N. incompta*) preserved in DOC buffer and taken from 0-200 m depth.
- 20 whole *Neogloboquadrina pachyderma* right coiling (= *N. incompta*) preserved in Urea buffer and taken from 0-200 m depth.

Station Iberia-Forams 7

- 10 crushed *Globigerinoides sacculifer* preserved in DOC buffer and taken from 0-100 m depth.
- 10 whole *Globigerinoides sacculifer* preserved in Urea buffer and taken from 0-100 m depth.
- 5 crushed Orbulina universa preserved in DOC buffer and taken from 0-100 m depth.
- 7 crushed *Globigerina bulloides* (small ones) preserved in DOC buffer and taken from 0-100 m depth.

Station Iberia-Forams 10

- 15 crushed *Globigerinoides sacculifer* preserved in DOC buffer and taken from 0-100 m depth.
- 15 whole *Globigerinoides sacculifer* preserved in Urea buffer and taken from 0-100 m depth.

Station Iberia-Forams 12

- 10 crushed *Globigerinoides ruber* pink preserved in DOC buffer and taken from 0-100 m depth.
- 11 whole *Globigerinoides ruber* pink preserved in Urea buffer and taken from 0-100 m depth.
- 15 crushed *Globigerina bulloides* preserved in DOC buffer and taken from 0-100 m depth.
- 15 whole *Globigerina bulloides* preserved in Urea buffer and taken from 0-100 m depth.
- 18 crushed *Orbulina universa* preserved in DOC buffer and taken from 0-100 m depth.

- 10 crushed Globigerinoides sacculifer preserved in DOC and taken from 0-100 m depth.
- 10 whole Globigerinoides sacculifer preserved in Urea buffer and taken from 0-100 m depth.

5 Data and Sample Storage

The CTD data will remain with the PI, Antje Voelker, until publication. After publication the data will be made available through one of the World Data Centers.

The seawater samples for stable isotope measurements, the Multi-Net samples for the ecological studies and the remaining material of the plankton net samples for the molecular phylogeny study are stored with the Marine Geology Group of IPMA in Lisbon. The seawater samples are the responsibility of Antje Voelker. The Multi-Net samples will be studied by Andreia Rebotim for her PhD thesis.

The planktonic foraminifer specimens collected for the molecular phylogeny study will be studied by Prof. Kate Darling at the University of Edinburgh.

The filters (for coccolithophorids) of station Ib-F 1, i.e. the location of the CALIBERIA project study site, are stored with the Marine Geology Group of IPMA. The filters from all the other stations will be prepared and studied (if they yield material) by Blanca Ausin Gonzalez at the University of Salamanca.

No	Name	Gen-	Affilia-	On-board tasks				
		der	tion					
1	Antje H. L. Voelker	F	MGG	Chief scientist; CTD profiling and				
				sample depth selection				
2	Andreia S. Rebotim	F	MGG	Seawater and Multi-Net sampling				
3	Catarina D. Cavaleiro	F	MGG	Seawater and Multi-Net sampling				
4	Warley Soares	М	MGG	Seawater and Multi-Net sampling				
5	Blanca A. Gonzalez	F	USAL	Seawater and Multi-Net sampling				
6	Eloy B. Cabarcos	М	USAL	Seawater and Multi-Net sampling				
7	David B. Bell	М	UED	Multi-Net sampling; Phylogeny study				
8	Andres G. Sotelo	М	UTM	Technician; CTD/Rosette & Multi-Net				
				operations				
9	Javier V. Rodriguez	М	UTM	Technician; CTD/Rosette & Multi-Net				
				operations				
MG	G Marine Geolog	y Grou	o, Portugues	se Institute for the Ocean and				
	Atmosphere (ip	tmosphere (ipma), Lisbon, Portugal						
USA	L Oceanic Geos	Ceanic Geosciences Group (GGO), Department of Geology.						
	University of S	University of Salamanca, Salamanca, Spain						
	School of Geo	science	s Iniversity	of Edipburgh, Edipburgh, United				
ULL	Kingdom	30161106	s, onversity	or Eambargh, Eambargh, Office				
UTM	Marine Techno	ology Gi	roup, CSIC,	Barcelona, Spain				

6 Participants

7 Station List

Station No.	Date	Time*	Latitude	Longitude	Water Depth	Gear [#]	Remarks/Recovery	
	2012	[UTC]	[°N]	[°W]	[m]			
							5, 20, 40, 60, 90, 120, 160, 190, 250,	
lb-F 1	10.09	16:21	42° 05.48'	9° 23.03'	324	CTD/ ROS	300	
lb-F 1	10.09	18:20	42° 05.70'	9° 22.72'	317	MN	MN haul interrupted; commun. problem	
lb-F 1	10.09	19:20	42° 05.27'	9° 23.11'	354	MN	5-25, 25-50, 50-80, 80-180, 180-280	
lb-F 2	10.09	21:25	42° 05.37'	9° 35.81'	1792	CTD/ ROS	CTD profile interrupted; comm. problem	
							10, 40, 80, 150, 300, 400, 600, 820,	
Ib-F 2	10.09	22:55	42° 05.94'	<u>9° 35.58'</u>	1757	CID/ROS	1150, 1300, 1600, 1750	
Ib-F 2	11.09.	1:09	42° 05.51'	9° 35.85'	1810	MN	5-25, 25-80, 80-200, 200-300, 300-400	
њ г о	11.00	0.50	449 40 00		4050		10, 50, 90, 150, 300, 400, 700, 800,	
	11.09.	8:50	41° 12.22	9° 36.08	1650	CTD/ RUS	1000, 1200, 1450, 1650	
ID-F 3	11.09.	12:17	41 12.10	9' 30.00	1672	MIN (G)	5-30, 30-90, 90-200, 200-300, 300-500	
ID-F 3	11.09.	13.49	41 12.43	9 30.39	1072	IVIIN	5-50, 50-90, 90-200, 200-400, 400-600	
lb-E /	11 00	20.12	40° 20 06'	9° 15 90'	800		10, 50, 75, 100, 150, 250, 550, 400,	
	11.00.	20.72	40 20.00	0 40.00	000	010/1000	10 50 75 150 240 330 470 750	
lb-F 5	11.09.	22:43	40° 20.07'	9° 52.72'	2430	CTD/ ROS	1200, 1600, 1900, 2300	
10 1 0		22.10	10 20101	0 02.112	2100	010/100	5-100, 100-200, 200-300, 300-500, 500-	
lb-F 5	12.09.	1:27	40° 19.64'	9° 52.50'	2406	MN	700	
							5-50, 50-100, 100-200, 200-300, 300-	
lb-F 5	12.09.	3:12	40° 18.68'	9° 53.01'	2786	MN (G)	400	
							10, 30, 50, 80, 120, 180, 250, 350, 450,	
lb-F 6	12.09.	14:00	38° 45.88'	9° 59.07'	1247	CTD/ ROS	630, 900, 1150	
							5-70, 70-140, 140-240, 240-340, 340-	
Ib-F 6	12.09.	17:07	38° 42.37'	10° 01.22'	970	MN	540	
	40.00	0.10		08 40 00	400		10, 20, 30, 45, 75, 100, 125, 175, 220,	
	13.09.	8:19	36° 48.22	8° 48.00'	423	CTD/ ROS	280, 350, 400	
	13.09.	9.20	30° 46.07	0° 47.09	423	MIN (G)	5-50, 50-100, 100-200, 200-300	
	13.09.	10.20	30 47.54	0 47.01	400		5-50, 50-100, 100-200, 200-500	
lb-E 8	13.09	15.01	36° 47 93'	8° 02 38'	552	CTD/ ROS	10, 25, 45, 60, 90, 125, 180, 280, 350, 390, 480, 560	
lb-F 8	13.09.	16:11	36° 48.16'	8° 02.24'	501	MN	5-60, 60-120, 120-240, 240-400	
		_					10, 30, 50, 75, 100, 150, 200, 250, 350,	
lb-F 9	13.09.	18:57	36° 48.41'	7° 42.85'	555	CTD/ ROS	470, 500, 540	
lb-F 9	13.09.	20:00	36° 48.29'	7° 41.92'	553	MN (G)	5-90, 90-180, 180-270, 270-360	
lb-F 9	13.09.	21:11	36° 48.06'	7° 42.64'	558	MN	5-90, 90-180, 180-300, 300-460	
							10, 40, 75, 100, 150, 400, 600, 790,	
lb-F 10	14.09.	3:49	36° 02.24'	8° 13.89'	1919	CTD/ ROS	1000, 1250, 1650, 1900	
lb-F 10	14.09.	6:20	36° 02.40'	8° 13.95'	1915	MN (G)	5-100, 100-200, 200-300, 300-400	
lb-F 10	14.09.	7:26	36° 02.57'	8° 14.01'	1913	MN	5-100, 100-200, 200-500, 500-800	
					_		10, 50, 100, 150, 350, 700, 1250, 1450,	
Ib-F 11	15.09.	23:55	37° 33.67'	10° 06.81'	2559	CTD/ ROS	1700, 2000, 2250, 2500	
IL E 10	45.00	0.04	000 40 00	00.04.00	4000		10, 25, 50, 70, 90, 130, 250, 400, 570,	
ID-F 12	15.09.	9:21	36 43.03	9° 21.90'	1062			
ID-F 12	15.09.	10:57	36° 43.12'	<u>9° 21.94'</u>	1061	MN (G)	5-100, 100-200, 200-300, 300-400	
Ib-⊢ 12	15.09.	12:04	36° 43.37'	9° 22.21'	1050	MN	5-100, 100-200, 200-350, 350-550	

*: at start of descent

#: CTD/ ROS: Seabird CTD mounted on Rosette with 12 10-liters bottles; MN: Hydrobios Multi-Net; MN (G): Hydrobios Multi-Net haul for genotype material

8 Acknowledgements

We thank the captain and crew of B/O Garcia del Cid for their cooperation and help during the cruise, especially proving us with needles and yarn to repair the nets. Emilia Salgueiro (UGM) gets a heartfelt thanks for providing us with a previously damaged plankton net that provided the patches needed to repair our nets thereby saving a major part of the scientific work. A big thanks goes also to MARUM (Bremen) for lending Antje Voelker four Multi-Net collector cups and providing additional meshes for the cups that allowed us operating the complete set of 5 nets. Antje Voelker also acknowledges financial contributions from the INTER-TRACE project (FCOMP-01-0124-FEDER-007113; PTDC/CLI/70772/2006), Ana Aranda da Silva (MGG) and Erna Willweber (deceased) for buying 3 plankton nets and the material needed during the cruise and for sample storage. We, furthermore, thank Emilia Salgueiro for driving the Portuguese team and the cruise material to Vigo and Ana I. Rodrigues (MGG) for the return pick-up from Huelva. We acknowledge LNEG for providing the van used for those transports, respectively.

9 References

- Abrantes, F., Moita, M.T., 1999. Water column and recent sediment data on diatoms and coccolithophorids, off Portugal, confirm sediment record of upwelling events. Oceanologica Acta 22, 319-336.
- Bindoff, N.L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, C.K., Talley, L.D., Unnikrishnan, A., 2007. Observations: Oceanic climate change and sea level. In: Climate change 2007: The physical science basis (Fourth Assessment Report). Cambridge, United Kingdom: Cambridge University Press.
- Darling, K.F., Wade, C.M., 2008. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Marine Micropaleontology 67, 216-238.
- Expedition 339 Scientists, 2012. Integrated Ocean Drilling Program Expedition 339 Preliminary Report — Mediterranean Outflow: Environmental significance of the Mediterranean Outflow Water and its global implications; 16 November 2011–16 January 2012; Integrated Ocean Drilling Program Management International, Inc., doi:10.2204/iodp.pr.339.2012; http://publications.iodp.org/preliminary_report/339/
- Haynes, R., Barton, E.D., Pilling, I., 1993. Development, Persistence, and Variability of Upwelling Filaments Off the Atlantic Coast of the Iberian Peninsula. Journal of Geophysical Research 98, 22681-22692.
- McGrath, T., Kivimäe, C., Tanhua, T., Cave, R.R., McGovern, E., 2012. Inorganic carbon and pH levels in the Rockall Trough 1991-2010. Deep Sea Research Part I: Oceanographic Research Papers 68, 79-91.
- Mulitza, S., Boltovskoy, D., Donner, B., Meggers, H., Paul, A., Wefer, G., 2003. Temperature: δ¹⁸O relationships of planktonic foraminifera collected from surface water. Palaeogeography Palaeoclimatology Palaeoecology 202, 143-152.
- Queiroga, H., Silva, C., Sorbe, J.C., Morgado, F., 2005. Composition and distribution of zooplankton across an upwelling front on the northern Portuguese coast during summer. Hydrobiologia 545, 195-207.
- Salgueiro, E., Voelker, A., Abrantes, F., Meggers, H., Pflaumann, U., Loncaric, N., Gonzalez-Alvarez, R., Oliveira, P., Bartels-Jonsdottir, H.B., Moreno, J., Wefer, G., 2008. Planktonic foraminifera from modern sediments reflect upwelling patterns off

Iberia: Insights from a regional transfer function. Marine Micropaleontology 66, 135-164.

- Salgueiro, E., Rodrigues, T., de la Granda, F., Villacieros-Robineau, N., Alonso, F., Zuñiga, D., Martin, P.A., Castro, C.G., Voelker, A., Abrantes, F., 2012. Temperature calibration along the NW Iberian margin: multi-proxy approach. Geophysical Research Abstracts 14, EGU2012- 11503.
- Sousa, F.M., Bricaud, A., 1992. Satellite-Derived Phytoplankton Pigment Structures in the Portuguese Upwelling Area. Journal of Geophysical Research 97, 11343-11356.
- Stehle, M., Dos Santos, A., Queiroga, H., 2007. Comparison of zooplankton sampling performance of Longhurst-Hardy Plankton Recorder and Bongo nets. Journal of Plankton Research 29, 169-177.
- Villa, H., Quintela, J., Coelho, M.L., Icely, J.D., Andrade, J.P., 1997. Phytoplankton biomass and zooplankton abundance on the south coast of Portugal (Sagres), with special reference to spawning of Loligo vulgaris. Sciencia Marina 61, 123-129.
- Wilke, I., Meggers, H., Bickert, T., 2009. Depth habitats and seasonal distributions of recent planktic foraminifers in the Canary Islands region (29°N) based on oxygen isotopes. Deep Sea Research Part I: Oceanographic Research Papers 56, 89-106.

10 Annexes

- 10.1 Depths and comments for seawater stable isotope samples
- 10.2 Detailed Information for Multi-Net samples
- 10.3 Detailed Information for Plankton Filter Samples
- 10.4 Seawater pH Values

Annex 10.1: Depths and comments for	or seawater stable isotope samples
-------------------------------------	------------------------------------

Station	Latitude (N)	Longitude (W)	Sample Depth [m]	δ^{18} O/D	δ^{13} C	Comment
lb-F 1	42° 05.48'	9° 23.03'	5	у	у	
Ib-F 1			20	у	у	
Ib-F 1			40	у	у	
Ib-F 1			60	у	у	
Ib-F 1			90	у	у	
ID-F 1			120	У	У	
ID-F 1			160	У	У	Ob en en in en en en en tratien
ID-F 1			190	у	<u>y</u>	Change in oxygen concentration
			250	<u> </u>	<u> </u>	
	40º 05 07'	08 25 84	300	у	<u>y</u>	
	42° 05.37	9* 35.81	10	У	у	F laura a ser a s
ID-F 2			40	<u>y</u>	<u>y</u>	Flourescence maximum
			80	У	у	Base thermocline
ID-F 2			150	у	У	
ID-F 2			300	у	У	
ID-F 2			400	у	У	Salinity minimum
ID-F 2			600	у	у	
Ib-F 2			820	у	у	upper MOW vein
Ib-F 2			1150	у	у	lower MOW vein
Ib-F 2			1300	у	у	LSW (?)
Ib-F 2			1600	у	у	NADW
lb-F 2			1750	у	у	NADW
lb-F 3	41° 12.22'	9° 36.08'	10	у	у	
Ib-F 3			50	у	у	Fourescence maximum
lb-F 3			90	у	у	Base thermocline
lb-F 3			150	у	у	Oxygen minimum
lb-F 3			300	у	у	
lb-F 3			400	у	у	Salinity minimum
lb-F 3			700	у	у	upper MOW vein
lb-F 3			800	у	у	Salinity minimum within MOW
lb-F 3			1000	у	у	lower MOW vein
lb-F 3			1200	у	у	lower MOW vein
lb-F 3			1450	у	у	NADW
lb-F 3			1650	у	у	NADW
lb-F 4	40° 20.06'	9° 45.90'	10	у	у	
lb-F 4			50	У	y	
lb-F 4						near base thermocline, oxygen max.;
			75	у	у	base of flourescence maximum
lb-F 4			100	у	у	
lb-F 4			150	у	у	
lb-F 4			250	у	у	
lb-F 4						within subsurface oxygen maximum;
			330	у	у	lower salinity
lb-F 4			400	у	у	NACW/ MOW mixing zone
lb-F 4			500	у	у	NACW/ MOW mixing zone
lb-F 4			580	у	у	MOW
lb-F 4			680	у	у	MOW
lb-F 4			780	у	у	MOW
lb-F 5	40° 20.07'	9° 52.72'	10	V	V	
lb-F 5			50	v	v	Flourescence maximum
lb-F 5			75	V	v	Base thermocline
lb-F 5			150	v	v	
lb-F 5			240	y V	y V	
lb-F 5			<u>2</u> -10	y V	y V	
Ib-E 5			470	<u>у</u>	<u>у</u>	Subsurface ovugen max : Salinity min
Ib-E 5			<u>410</u> 750	у у	<u>у</u>	
10-1 J			100	У	У	
			1200	<u>у</u>	<u>у</u>	
с л-ui			1600	У	У	INAUW

Station	Latitude (N)	Longitude (W)	Sample Depth [m]	δ^{18} O/D	δ ¹³ C	Comment
lb-F 5	40° 20.07'	9° 52.72'	1900	у	У	NADW
lb-F 5			2300	у	у	NADW
lb-F 6	38° 45.88'	9° 59.07'	10	у	у	
lb-F 6			30	у	у	
lb-F 6			50	У	У	within flourescence maximum
lb-F 6			80	у	у	close to subsurface salinity maximum
lb-F 6			120	у	у	close to subsurface oxygen maximum
lb-F 6			180	у	У	
lb-F 6			250	у	У	
lb-F 6			350	у	У	
lb-F 6			450	у	у	Salinity minimum
lb-F 6			630	у	у	upper MOW vein
lb-F 6			900	у	у	lower MOW vein
lb-F 6			1150	у	у	lower MOW vein
lb-F 7	36° 48.22'	8° 48.00'	10	у	У	
lb-F 7			20	у	У	± base seasonal thermocline
lb-F 7			30	у	у	within flourescence maximum
lb-F 7				•		base thermocline; below flourescence
			45	у	у	and oxygen maximum
lb-F 7			75	y	У	subsurface salinity maximum
lb-F 7			100	v	v	
lb-F 7			125	v	v	
lb-F 7			175	v	v	subsurface oxygen minimum
lb-F 7			220	y V	y y	narrow flourescence neak
lb-F 7			220	y V	y	harrow nourcescence peak
10-1 7 1b-E 7			200	<u>у</u>	<u>у</u>	
			300	<u>y</u>	<u>y</u>	
	000 17 001	00 00 001	400	у	У	
	36° 47.93	8° 02.38	10	у	у	
ID-F 8			25	у	У	± base of seasonal thermocline
Ib-F 8			45	у	у	fourescence maximum
lb-F 8			60	у	у	near base of thermocline
lb-F 8			90	у	У	subsurface salinity maximum
lb-F 8			125	у	у	
lb-F 8			180	у	У	
lb-F 8			280	у	у	within salinity minimum layer
lb-F 8			330	У	У	small salinity maximum
lb-F 8			390	y	V	near base of salinity minimum layer
lb-F 8			480	ý	ý	MOW
lb-F 8			560	v	v	MOW
lb-F 9	36° 48 41'	7° 42 85'	10	V	v	base seasonal thermocline
Ib-F 9	00 10.11	7 12.00	10	y	y	1st subsurface salinity minimum: upper
101 0			30	v	v	half of flourescence peak
lb-F 9				1	,	within flourescence peak: ± base
			50	v	v	thermocline
lb-F 9				,	1	lower half of flourescence peak: below
			75	v	v	oxvgen maximum
lb-F 9						wihtin 2nd subsurface salinity
			100	У	У	maximum
lb-F 9						close to upper boundary of salinity
			150	у	у	minimum water mass
lb-F 9			200	y	V	
lb-F 9			250	V	v	
lb-F 9			350	v	v	
lb-F 9			000	J	J	lower boundary of salinity minimum
			470	v	v	water mass
lb-F 9			500	v	v	upper boundary of MOW
Ib-F 9			540	y V	y V	MOW
Ib-E 10	36° 02 24'	8° 12 90'	10	<u>y</u>	<u>y</u>	
Ib-F 10	50 02.24	0 13.09	10	у	у	upper boundary of thermocline and
			40	V	v	flourescence peak
lb-E 10			75	<u>y</u>	<u>y</u>	hase of oxygen maximum
			13	у	у	

Station	Latitude (N)	Longitude (W)	Sample Depth [m]	δ^{18} O/D	δ ¹³ C	Comment
lb-F 10						below thermocline and oxygen
	36° 02.24'	8° 13.89'	100	у	у	maximum
lb-F 10			150			base of 2nd subsurface salinity
lb-F 10			400	<u>у</u>	<u>y</u>	middle of low salinity water mass
Ib T 10			400	у	у	lower boundary of low salinity water
			600	v	v	mass
lb-F 10			790	V	V	oxygen minimum
lb-F 10			1000	ý	y V	MOW (diluted)
lb-F 10			1250	v	v	lower MOW core
lb-F 10						below strong MOW/ NADW mixing
			1650	у	у	zone
lb-F 10			1900	у	у	NADW
lb-F 11	37° 33.67'	10° 06.81'	10	у	у	
lb-F 11			50	у	у	wihtin flourescence maximum
lb-F 11						± base of thermocline, oxygen
			100	у	у	maximum and flourescence maximum
lb-F 11			150	у	у	
lb-F 11			350	у	у	salinity minimum water mass
lb-F 11			700	у	у	upper MOW vein
lb-F 11			1250	у	у	lower MOW vein
lb-F 11			1450	у	у	lower boundary of lower MOW
lb-F 11			1700	у	у	MOW/ NADW mixing zone
lb-F 11			2000	у	у	
lb-F 11			2250	у	у	NADW (highest oxygen level)
lb-F 11			2500	у	у	NADW
lb-F 12	36° 43.03'	9° 21.90'	10	у	у	
lb-F 12			25	у	y	
lb-F 12			50	у	у	± flourescence maximum
lb-F 12			70	у	у	
lb-F 12			90	у	у	± base thermocline
lb-F 12			130	у	у	NACW subtropical
lb-F 12			250	у	у	
lb-F 12			400	у	у	low salinity water mass
lb-F 12			570	у	у	oxygen minimum
lb-F 12			700	у	у	upper MOW vein
lb-F 12						upper salinity maximum in lower MOW
			850	у	у	vein
lb-F 12			1000	у	У	lower MOW

Annex 10.2: Detailed Information for Multi-Net sample

	Latitudo	Longitudo	Sampling	Volume	Cup mesh	Net mesh	
Station	(N)	(W)	intervals [dbar]	filtered [m ³]	size [µm]	size [µm]	Comments
lb-F 1	42° 05.27'	9° 23.11'	5–25	<u> </u>	64	100	
lb-F 1			25-50	27	64	100	
lb-F 1			50-80	35	64	100	
lb-F 1							net has small
			80-180	106	100	100	tears/ holes
Ib-F 1			180-280		100	100	
Ib-F 2	42° 05.51'	9° 35.85'	5-25	11	64	100	tear in cup mesh
Ib-F 2			25-80	34	64	100	
Ib-F 2			80-200	96	64	100	
Ib-F 2			200-300	91	100	100	net run with holes
lb-F 2			000 400		100	100	upper part of cup
			300-400	99	100	100	broken; no sample
ID-F 3	41° 12.18'	9° 35.85'	5-30	ca. 8	64	100	
ID-F 3			30-90	28	64	100	
ID-F 3			90-200	73	64	100	
Ib-F 3			200-300	76	100	100	
ID-F 3			300-500	140	100	100	
Ib-F 3	41° 12.43'	9° 36.39'	5-30	12	64	100	
ID-F 3			30-90	46	100	100	
Ib-F 3			90-200	66	64	100	
Ib-F 3			200-400		100	100	
Ib-F 3			400-600	173	64	100	
							thermocline;
Ib-F 5	40° 19.64'	9° 52.50'	5-100	55	100	100	flourescence max.
Ib-F 5			100-200	85	100	100	
Ib-F 5			200-300	84	64	100	
ID-F 5			000 500	454	0.4	100	salinity minimum
			300-500	154	64	100	water mass
ID-F 5			500-700	102	04	100	
lb-F 5	40° 18.68'	9° 53.01'	5–50	20	100	100	
lb-F 5			50-100	36	100	100	
lb-E 5			30-100	50	100	100	
			100-200	82	64	100	
lb-F 5			200-300	80	64	100	
lb-E 5			200 000	00	0-1	100	
			300-400	84	64	100	
lb-F 6	38° 42.37'	10° 01.22'	5–70	69	100	100	
lb-F 6			70-140	87	100	100	
lb-F 6			140-240	145	64	100	
							big tear in net
			040 040	450	0.4	100	near bottom;
ID-F 6			240-340	158	64	100	sample lost
			240 540	260	64	100	two small notes in
	260 40 07	0° 47 50'	540-540	200	100	100	net
	30 40.07	0 47.09	50 100	19	100	100	
			100-200	20	100 64	100	
Ib-F 7			200-200	71	6/	100	
Ib-F 7	36° 47 54'	8° 47 61'	5_50	10	6/	100	flourescence may
lb-F 7	00 TI.UT	5 17.01	50-100	35	64	100	
lb-F 7			100-200	86	100	100	
Ib-F 7			200-300	89	100	100	
.~			_00 000		100	100	thermocline and
lb-F 8	36° 48 16'	8° 02 24'	5-60	26	100	100	fourescence max
Ib-F 8	00 10.10	0 02.21	60-120	40	100	100	
lb-F 8							samples over
			120-240	96	64	100	turbidity peak
lb-F 8			240-400	127	64	100	~ 1

Station	Latitude	Longitude	Sampling intervals	Volume filtered	Cup mesh size [um]	Net mesh size [um]	Comments
	(N)	(VV)	[dbar]	[m ³]		[]]	
lb-F 9	36° 48.29'	7° 41.92'	5–90	46	100	100	
lb-F 9			90-180	67	100	100	
lb-F 9			180-270	74	64	100	
lb-F 9			270-360	82	64	100	
lb-F 9	36° 48.06'	7° 42.64'	5–90	44	100	100	
lb-F 9			90-180	56	100	100	
lb-F 9			180-300	93	64	100	
lb-F 9			300-460	140	64	100	
							thermocline;
lb-F 10	36° 02.40'	8° 13.95'	5–100	26	100	100	flourescence max.
lb-F 10			100-200	60	100	100	
lb-F 10			200-300	68	64	100	
lb-F 10							net became un-
			300-400	67	64	100	zipped; no sample
lb-F 10	36° 02.57'	8° 14.01'	5–100	28	100	100	
lb-F 10			100-200	43	100	100	
lb-F 10			200-500	213	64	100	
lb-F 10			500-800	254	64	100	
lb-F 12	36° 43.12'	9° 21.94'	5–100	25	100	100	
lb-F 12			100-200	63	100	100	
lb-F 12			200-300	74	64	100	
lb-F 12			300-400	87	64	100	
lb-F 12	36° 43.37'	9° 22.21'	5–100	24	100	100	
lb-F 12			100-200	40	100	100	
lb-F 12			200-350	79	64	100	
lb-F 12	-		350-550		64	100	

Station	Latitude	Longitude	Sample	Volume filtered
otation	(N)	(W)	Depth [m]	[liters]
Ib-F 1	42° 05.48'	9° 23.03'	5	3
Ib-F 1			20	3.2
ID-F 1			40	3
			60	3.5
	40º 05 07'	09 25 94	120	3.0
	42 05.37	9 33.61	10	3
			40	3
10-1 2 1b-E 2			150	36
ID-1 2			200	3.0
	110 10 00'	00 26 00	300	3.4
ID-F 3	41 12.22	9 30.00	50	<u></u> ు
10-1 J			<u> </u>	ى 2.4
			90	3.4
ID-F 3			100	3.4
	40% 20.06	08 45 00	300	3.4
ID-F 4	40 20.06	9 40.90	<u> </u>	3 2 F
10-1 4 lb-E 4			50 75	2.0
Ib-F 4			100	<u>ح</u>
10-1 4 lb-F /			100	<u>ა.4</u> ვი
Ib-F 4			250	<u>ى.2</u>
	400 20 07	0° 50 70'	230	<u> </u>
ID-F 5	40 20.07	9 52.72	50	3 25
10-1 5 16-E 5			<u> </u>	2.0
Ib-F 5			150	3
Ib-F 5			240	3
Ib-F 6	38° 15 88'	0° 50 07'	240	3
ID-F 0	30 45.00	9 59.07	30	3
Ib-F 6			50	3
Ib-F 6			80	3
Ib-F 6			120	3
lb-F 6			180	3.6
lb-F 7	36° 48.22'	8° 48.00'	10	3
lb-F 7			20	3
lb-F 7			30	3
lb-F 7			45	3
lb-F 7			75	3
lb-F 7			100	3.6
lb-F 7			125	3.6
lb-F 7			175	3.6
lb-F 7			220	3.6
lb-F 8	36° 47.93'	8° 02.38'	10	3
lb-F 8			25	3
lb-F 8			45	3
lb-F 8			60	3.4
lb-F 8			90	3.4
lb-F 8			180	3
lb-F 9	36° 48.41'	7° 42.85'	10	2.6
lb-F 9			30	3
lb-F 9			50	3
lb-F 9			75	3
lb-F 9			100	3.4
lb-F 9			150	3.4
lb-F 9			200	3.4
lb-F 10	36° 02.24'	8° 13.89'	10	3
lb-F 10			40	3
lb-F 10			75	3.4

Annex 10.3: Detailed Information for Plankton Filter Samples

Station	Latitude	Longitude	Sample	Volume filtered
	(N)	(W)	Depth [m]	[liters]
lb-F 10			100	3.4
lb-F 10			150	3.4
lb-F 11	37° 33.67'	10° 06.81'	10	3
lb-F 11			50	3
lb-F 11			100	3.4
lb-F 11			150	3.4
lb-F 12	36° 43.03'	9° 21.90'	10	3
lb-F 12			25	3
lb-F 12			50	3.4
lb-F 12			70	3.4
lb-F 12			90	3.4
lb-F 12			130	3
lb-F 12			250	3.4

Annex 10.4: Seawater pH Values

Station	Sample Depth [m]	Value 1	Value 2	Value 3	Mean Value
lb-F 1	5	8.209	8.203		8.206
lb-F 1	20	8.205	8.205		8.205
lb-F 1	40	8.185	8.176		8.181
lb-F 1	60	8.152	8.153		8.153
lb-F 1	90	8.129	8.133		8.131
lb-F 1	120	8.101	8.122		8.112
Ib-F 1	160	8.113	8.100		8.107
Ib-F 1	190	8.097	8.097		8.097
Ib-F 1	250	8.093	8.102		8.098
ID-F 1	300	8.110	8.102		8.106
Ib-F 2	10	8.221	8.222		8.222
ID-F 2	40	8.205	8.202		8.204
ID-F 2	80	8.162	8.162		8.162
	150	8.130	8.128		8.129
	300	8.122	<u>8.112</u> 9.110		0.117
	400	8.062	8.082	8 085	8.076
Ib-F 2	820	8.062	8.068	0.000	8.065
Ib-F 2	1150	8.059	8.065		8.062
lb-F 2	1300	8.054	8.056		8.055
lb-F 2	1600	8.043	8.047		8.045
lb-F 2	1750	8.036	8.041		8.039
lb-F 3	10	8.183	8.180		8.182
lb-F 3	50	8.150	8.152		8.151
lb-F 3	90	8.118	8.115		8.117
lb-F 3	150	8.084	8.088		8.086
lb-F 3	300	8.058	8.054		8.056
lb-F 3	400	8.053	8.052		8.053
Ib-F 3	700	8.050	8.047		8.049
Ib-F 3	800	8.019	8.021		8.020
10-F3	1000	8.050	8.055		8.053
	1200	0.000	8.037	9.014	8.000
ID-F 3	1450	8.037	8.020	0.014	8.020
Ib-F 4	1000	8 198	8 202		8 200
Ib-F 4	50	8 182	8 184		8 183
Ib-F 4	75	8.125	8,122		8.124
Ib-F 4	100	8.112	8.113		8.113
lb-F 4	150	8.111	8.108		8.110
lb-F 4	250	8.100	8.102		8.101
lb-F 4	330	8.060	8.058		8.059
lb-F 4	400	8.050	8.054		8.052
lb-F 4	500	8.040	8.036		8.038
Ib-F 4	580	8.055	8.050		8.053
	680	8.070	8.067		8.069
	/80	8.077	8.077	0.005	8.077
	10	8.229	8.238	8.235	8.234
	5U 7E	0.221	0.219 8 192	8 170	0.22U 8 177
Ib-F 5	150	8 150	8 156	0.179	8 158
lb-F 5	240	8.120	8.128		8.124
Ib-F 5	330	8.129	8.127		8.128
lb-F 5	470	8.119	8.113		8.116
lb-F 5	750	8.096	8.093		8.095
lb-F 5	1200	8.088	8.093		8.091
lb-F 5	1600	8.097	8.103		8.100
lb-F 5	1900	8.065	8.075		8.070
Ib-F 5	2300	8.032	8.058		8.045

Station	Sample Depth [m]	Value 1	Value 2	Value 3	Mean Value
lb-F 6	10	8.210	8.208		8.209
lb-F 6	30	8.195	8.199		8.197
lb-F 6	50	8.157	8.159		8.158
lb-F 6	80	8.140	8.142		8.141
lb-F 6	120	8.138	8.132		8.135
lb-F 6	180	8.122	8.120		8.121
lb-F 6	250	8.096	8.099		8.098
lb-F 6	350	8.063	8.073	8.074	8.070
lb-F 6	450	8.060	8.058		8.059
Ib-F 6	630	8.072	8.071		8.072
Ib-F 6	900	8.091	8.088		8.090
Ib-F 6	1150	8.076	8.074		8.075
Ib-F 7	10	8.278	8.271		8.275
	20	8.249	8.252		8.251
	30	8.206	8.217	0.464	8.212
	40	0.101 8.185	<u> </u>	0.101	8 186
Ib-F 7	100	8 182	8 175		8 179
Ib-F 7	125	8 138	8 140		8 139
Ib-F 7	175	8.088	8.097		8.093
lb-F 7	220	8.040	8.086	8.087	8.071
lb-F 7	280	8.079	8.071		8.075
lb-F 7	350	8.057	8.066		8.062
lb-F 7	400	8.027	8.033		8.030
lb-F 8	10	8.206	8.206		8.206
lb-F 8	25	8.201	8.195		8.198
lb-F 8	45	8.150	8.150		8.150
lb-F 8	60	8.145	8.148		8.147
lb-F 8	90	8.161	8.155		8.158
Ib-F 8	125	8.147	8.141		8.144
Ib-F 8	180	8.123	8.136	8.133	8.131
	280	8.093	8.087		8.090
	300	8.073	8.081		8.000
	480	8 118	8 11/		8 116
Ib-F 8	560	8 093	8 106	8 118	8 106
Ib-E 9	10	8 273	8 271	0.110	8 272
Ib-F 9	30	8 249	8 253		8 251
lb-F 9	50	8.229	8.237		8,233
lb-F 9	75	8.202	8.177	8.186	8.188
lb-F 9	100	8.192	8.176	8.175	8.181
lb-F 9	150	8.158	8.148		8.153
lb-F 9	200	8.147	8.152		8.150
lb-F 9	250	8.121	8.125		8.123
lb-F 9	350	8.111	8.094	8.096	8.100
Ib-F 9	470	8.084	8.092		8.088
Ib-F 9	500	8.063	8.053	8.085	8.067
Ib-F 9	540	8.035	8.041		8.038
Ib-F 10	10	8.205	8.215		8.210
10-F 10	40	8.238	8.233		8.236
ID-F 10	/5	8.184	8.185		8.185
	100	0.17U 8 150	8 064	8 167	0.10/ 8.107
Ib-F 10	100	8.068	8 068	0.107	8 068
Ib-F 10	600 600	8 049	8 033	8 040	8 041
Ib-F 10	790	8.038	8.021	8.021	8.027
Ib-F 10	1000	8.090	8.041	8.047	8.059
Ib-F 10	1250	8.104	8.127	8.118	8.116
lb-F 10	1650	8.106	8.096		8.101
lb-F 10	1900	<u>8</u> .113	8.103		<u>8</u> .108
lb-F 11	10	8.209	8.208		8.209
lb- <u>F 1</u> 1	50	8.202	8.211		8.207
lb-F 11	100	8,160	8.165		8.163

Station	Sample Depth [m]	Value 1	Value 2	Value 3	Mean Value
lb-F 11	150	8.150	8.152		8.151
lb-F 11	350	8.124	8.100	8.098	8.107
lb-F 11	700	8.132	8.135		8.134
lb-F 11	1250	8.121	8.123		8.122
lb-F 11	1450	8.098	8.097		8.098
lb-F 11	1700	8.096	8.093		8.095
lb-F 11	2000	8.088	8.094		8.091
lb-F 11	2250	8.081	8.080		8.081
lb-F 11	2500	8.077	8.083		8.080
lb-F 12	10	8.197	8.200		8.199
lb-F 12	25	8.216	8.217		8.217
lb-F 12	50	8.201	8.214	8.202	8.206
lb-F 12	70	8.164	8.155		8.160
lb-F 12	90	8.128	8.124		8.126
lb-F 12	130	8.114	8.127	8.120	8.120
lb-F 12	250	8.041	8.088	8.092	8.074
lb-F 12	400	8.060	8.070		8.065
lb-F 12	570	8.066	8.058		8.062
lb-F 12	700	8.107	8.114		8.111
lb-F 12	850	8.129	8.131		8.130
lb-F 12	1000	8.077	8.090	8.093	8.087

