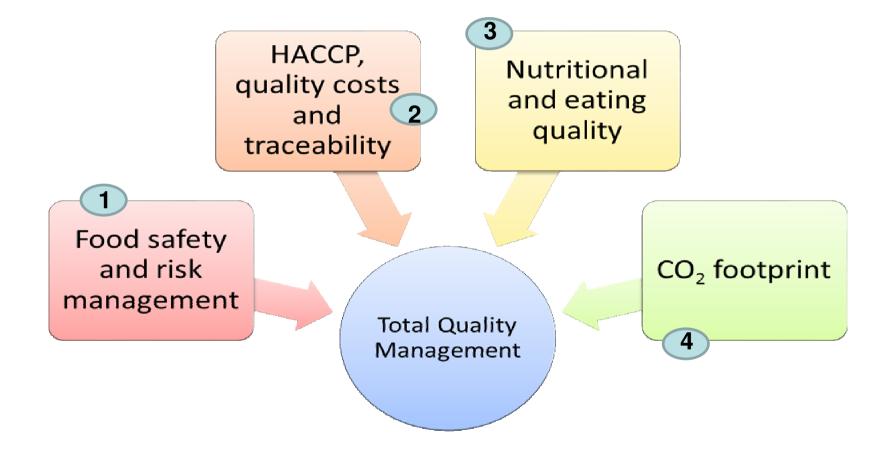


Portuguese Institute for Sea and Atmosphere Maria Leonor Nunes

mlnunes@ipma.pt

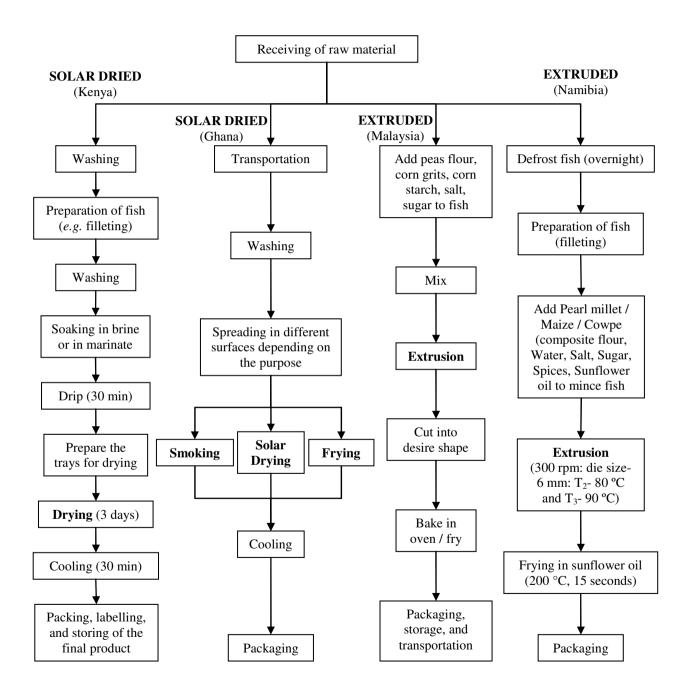
Workshop Lisbon, Portugal 1-2 December 2014

WP4 - OBJECTIVES


DEVELOPMENT OF QUALITY CONTROL MANAGEMENT TOOLS AND GUIDELINES

- To develop a food safety and risk assessment tool
- To assess HACCP, quality costs and traceability
- To investigate nutritional and eating quality of the products
- To undertake carbon footprint analyses
- To develop guidelines for Total Quality Management

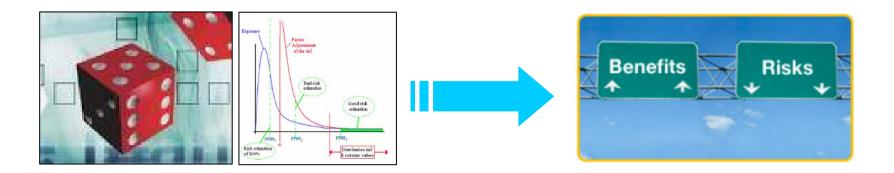
WP4 - OBJECTIVES

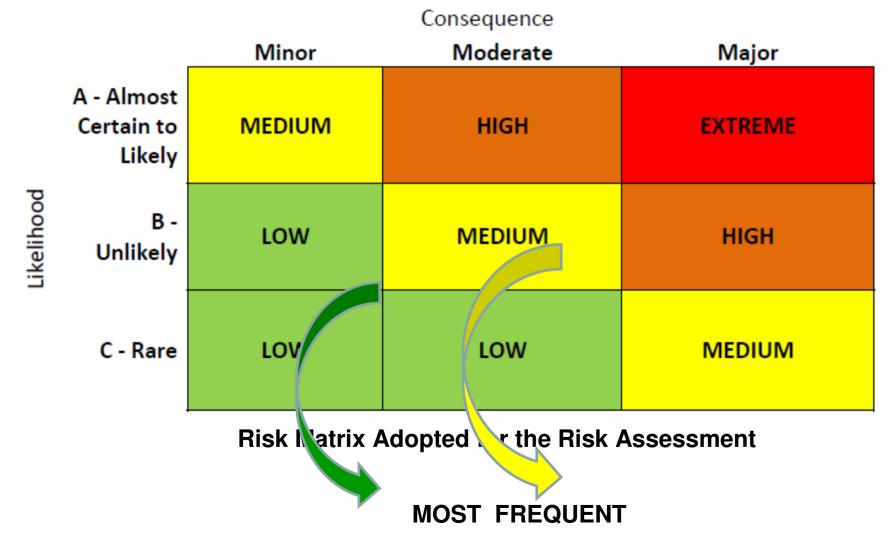

It is known, that seafood has:

Balanced amino acid profile
 High PUFA - ω3 fatty acids content
 Significant amounts of essential minerals

...and may present some hazards:

- **Toxic metals (Hg, Pb, Cd, etc.)**
- Microrganisms (Bacteria, Virus, etc.)
- Organic contaminants (PCBs, etc.)
- Marine biotoxins
- j ..




How to assess the risks and benefits associated to the consumption of seafood?

Identify main risks and benefits
 Apply a probabilistic approach
 Quantify probability of exceeding thresholds
 Balance probabilities of exposure to hazards and attainment of benefits

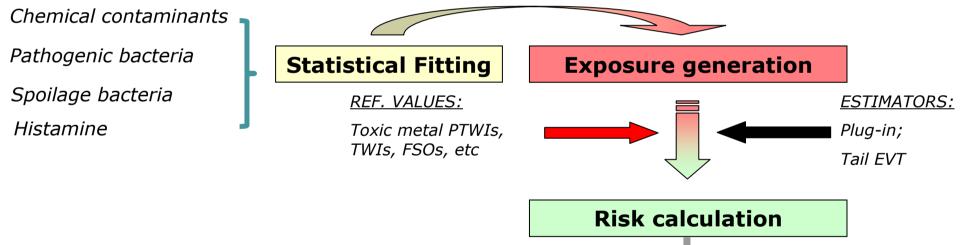
Identify main risks and benefits

Supply chain	Risk	Fresh/frozen fish	Dried fish	Extruded fish	CAFD fish		
		Current risk assessment (with existing controls)					
	Bacterial / viral contamination (Hystamine ??)	LOW Depends on species	LOW Depends on species	LOW Depends on species	LOW Depends on species		
Pre-harvest	Contamination by accumulation of heavy metals	MEDIUM	MEDIUM	MEDIUM	MEDIUM		
	Contamination by agricultural and industrial chemicals	LOW	LOW	LOW	LOW		
Harvesting	Contamination from workers, machinery or water sources	LOW	LOW	LOW	LOW		
Processing	Microbiological contamination of products, food-packaging materials, and food-contact surfaces from employees	MEDIUM	MEDIUM	MEDIUM	MEDIUM		
	Microbiological contamination from environmental sources (premises and equipment)	MEDIUM	MEDIUM	MEDIUM	MEDIUM		

Supply chain	Risk	Fresh/frozen fish	Dried fish	Extruded fish	CAFD fish	
		Current risk assessment (with existing controls)				
Storage and packaging	Microbiological contamination and growth during storage and packaging	LOW	LOW	LOW	LOW	
Transport	Microbiological contamination and growth during transport	LOW	LOW	LOW	LOW	
Wholesale	Microbiological contamination and growth during wholesale	LOW	LOW	LOW	LOW	
Retail	Microbiological contamination and growth during retailing	MEDIUM	MEDIUM	LOW/ MEDIUM	LOW	
	CATEGORIES	Cooked	Cooked	As an ingredient Cooked	Cooked	

Apply a probabilistic approach

Sampling methods – Hypercubic vs Monte Carlo random sampling (@RISK or Crystalball) Probability estimators – Plug-In vs Extreme Value Theory Risk-benefit comparison methodologies – **Direct probabilist** vs QALYs vs DALYs Chosen tools for the WP4 of SECUREFISH



WP 4

IN CONCLUSION

SCHEMATIC OVERVIEW

- + Hypothetical consumption distributions
- + Scenarios (1 meal of 150 g/week, etc)

Probabilities of exceeding PTWIs, TWIs, FSOs, etc

PTWI - The provisional tolerable weekly intake by kg of body weight TWI – Tolerable weekly intake by kg of body weight

FSOs - Food safety objectives

WP 4-Microbiological and chemical safety

An update of microbiological and chemical methods was supplied.

1. Methods for validation of microbiological quality of seafood *Main microbiological analyses used as indicator* :

- 1. Mesophilic aerobic plate count
- 2. Hydrogen sulfide (H₂S)-producing bacteria
- 3. Enterobacteriacea
- 4. Molds and yeasts
- 5. Lactic bacteria (sometimes used)
- 6. Psychrotrophic aerobes (sometimes used)

Main microbiological analyses for testing hygiene and handling :

- 1. Coliforms
- 2. Enterococci
- 3. Staphylococcus aureus

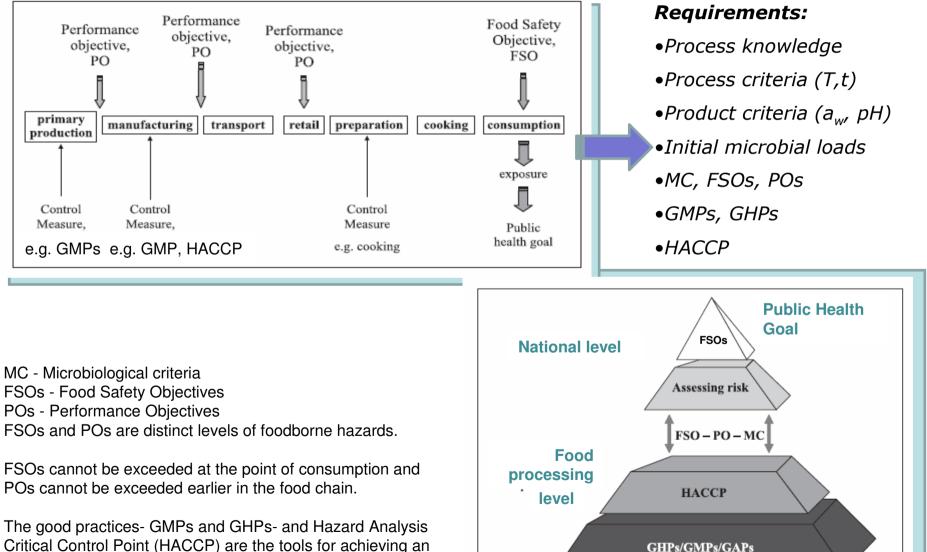
2. Methods for chemical safety

Main seafood contaminants used :

- 1. Mercury
- 2. Cadmium
- 3. Lead

Main indicators of degradation :

- 1. Total Volatile Base Nitrogen (TVB-N) and Trimethylamine (TMA-N)
- 2. Peroxide value (PV)
- 3. Malondialdehyde (MDA)


EXAMPLE

Probability of Exceeding the MeHg PTWI and EPA+DHA and Se DRI, P(Xi > PTWI or DRI) (%), in different species.

		P	(X _i > PTWI or DRI) (%)
		1 Meal/	2 Meals/	3 Meals/
		Week	Week	Week
	MeHg (PTWI)	<1.0x10 ⁻⁸	1.8x10 ⁻⁵	
Fish 1	Se	2.6x10 ⁻²	0.12	
	EPA+DHA	<1.0x10 ⁻⁸	<1.0x10 ⁻⁸	
	MeHg (PTWI)	<1.0x10 ⁻⁸	9.2x10 ⁻⁷	
Fish 2	Se	2.3x10 ⁻⁸	1.5x10 ⁻⁴	
	EPA+DHA	<1.0x10 ⁻⁸	9.8x10- ⁴	
	MeHg (PTWI)	<1.0x10 ⁻⁸	2.9x10 ⁻³	
Fish 3	Se	<1.0x10 ⁻⁸	4.1x10 ⁻⁵	
	EPA+DHA	1.9x10⁻ ⁷	0.11	
	MeHg (PTWI)	3.0x10 ⁻⁵	0.17	
Fish 4	Se	4.6x10 ⁻⁶	7.5x10 ⁻⁴	
	EPA+DHA	1.2×10^{-4}	0.10	

Consumptions up to two meals of 160 g/week are recommended (PTWI).

Critical Control Point (HACCP) are the tools for achieving an FSO or PO

WP 4

MICROBIAL SAFETY

Due to:

> intrinsic characteristics of the developed products [low a_w (≤ 0.3) and pH (5.5-7.0)]
 > The intended use is as an ingredient and cooked before consumption)

...no microbiological limits were defined

The main hazard is related to the histamine formation in some species, which is thermostable and should be controlled in the raw material (limit: 100 ppm/kg)

CHEMICAL SAFETY

Me-Hg PTWI- 1,6 mg/kg bw/week TWI - 1,3 mg/kg bw/week

Pb PTWI - 25 mg/kg bw/week

Cd PTMI - 25 mg/kg bw/week TWI - 2,5 mg/kg bw/week

WP 4-Microbiological and chemical safety

Hazard Analysis Critical Control Points

PRINCIPLES

- 1. Conduct hazard analysis
- 2. Determine critical control points (CCPs)
- 3. Establish critical limits
- 4. Establish system to monitor CCPs
- 5. Develop response when CCP violated
- 6. Verify that HACCP system is working
- 7. Document all HACCP procedures

OBJECTIVES

- 1. Legal requirement
- 2. Useful commercial business tool
- 3. Improves quality of product
- 4. Ensures safety of products
- 5. Provides competitive advantage
- 6. Minimizes economic risks
- 7. Internationally recognized

WP 4-Microbiological and chemical safety

Hazard Analysis Critical Control Points

Benefits of HACCP

- 1. Reduction or elimination of food safety hazards
- 2. Represents a preventative method
- 3. Recognition and thus control
- 4. Less end product quality tests
- 5. Marketing tool
- 6. Improved supplier status
- 7. Documentation = protection

What does HACCP do?

- Prevents food safety hazards at all steps during production and processing
- Places industry in position of responsibility for food safety
- Industry thereby in hot seat for public health

WP 4

QUALITY COSTS

Used species:

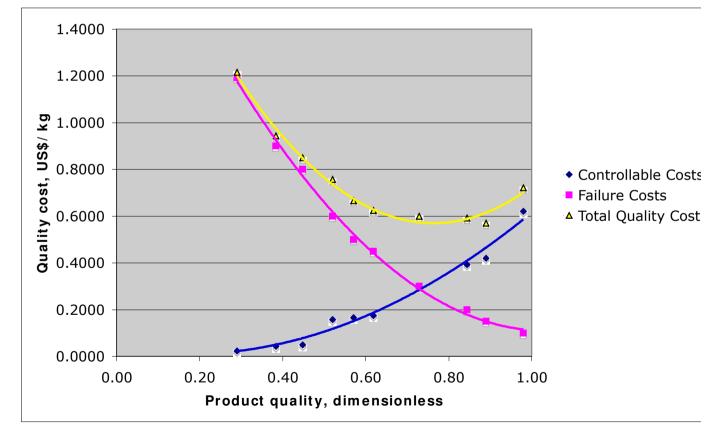
- Flounder (*Paralichthys patagonicus*), freeze dried (INTI, Argentina)
- Siganids (Siganus sutor), solar dried (Odour et al., Kenya)
- Anchovy (Stolephorus sp.), solar dried (Shamasundar et al., India)

WP 4 Quality Costs

Physical, biological, chemical, microbiological, and sensory quality characteristics of raw material and final products (proximate composition, pH, TVBN, TMA, PV, TBA, FFA, TPC, raw organoleptic assessment), studied together on a dimensionless scale

All the results indicated that the final quality of any processed product is most strongly influenced by the initial quality of the fish.

Good raw material quality also increased the yield and productivity.


For flounder, skin-on filleting yield was analyzed. A linear relationship between

WP 4 Quality Costs

A quality cost model for food processing plants has been developed and published (Zugarramurdi *et al.*, 2007). Quality costs for Solar dried fish

Regression analysis of the controllable costs (CC), failure costs (FC), and total quality costs (TQC) per unit of product for different levels of quality resulting from the application of the proposed model. Regression equations for the model were obtained fitting polynomial curves to the model values

securefish

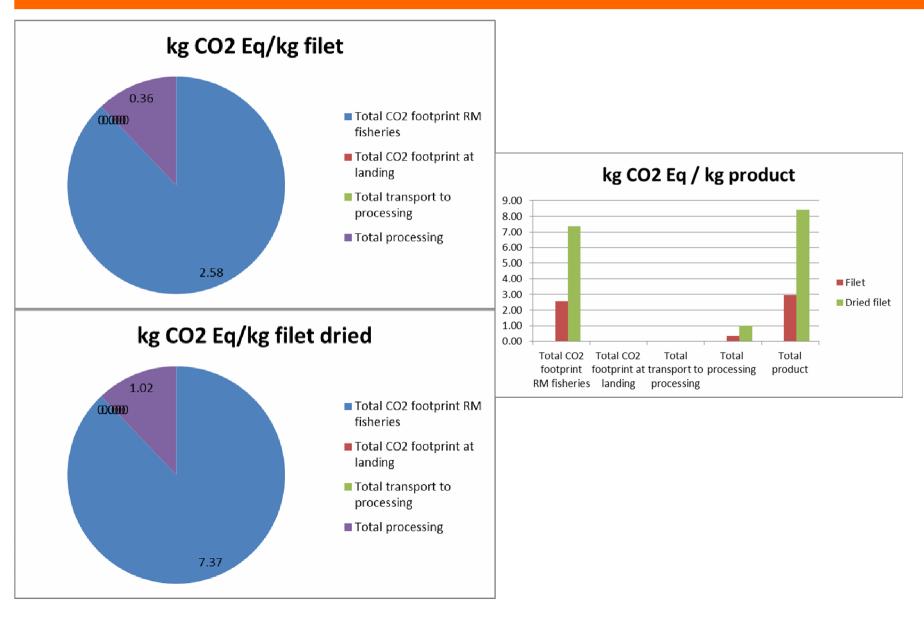
NUTRITIONAL ASPECTS and EATING QUALITY

NUTRITION FACTS Serving size: 160 g		EATING QUALITY FACTS			
Farmed salmon, Raw		Sensory attribute	Scale (0-100)	Definition	
Amount per serving		Odor Corn snack	None Much	Regular com snack's odor	
Energy: 409 kcal Energy from Fat: 287 kc	al	Rancid	None Much	Rancidity odor	
% Da	ily value	Shrimp Frying	None Much None Much	Shrimp odor Odor of fat from frying	
Total Fat 31.8 g	50	Appearance		•	
SAT Fat 5.3 g	30	Color (external)	Little Much Light Dark	Orange-reddish color at surface of snacks Inside the snacks: Is the color dark or light?	
MUFA 14.6 g		Color (internal) Texture	Light Daik	Inside the shacks, is the color data of nght:	
PUFA 9.4 g		Crispness	Little Much	Crispness of snack after first biting	
n-3 PUFA 5.6 g		Softness	Firm Soft	Softness of snacks when chewed and rubbed against palate with tongue.	
n3/n6 1.6		Flavor Corn snack	None Much	Regular com snack's flavor	
Sodium 377 mg	16	Shrimp	None Much	Shrimp flavor	
Carbohydrate 0 g		Rancid	None Much	Rancidity flavor	
		Frying	None Much	Flavor of fat from frying	
Protein 30.6 g	61	Bitterness	None Much	Bittemess of snack after chewing and tasting	
Calcium 150 mg		Sweetness Saltiness	None Much None Much	Sweetness of snack after chewing and tasting Saltiness of snack after chewing and tasting	
Selenium 35 µg		Jaimess	-		

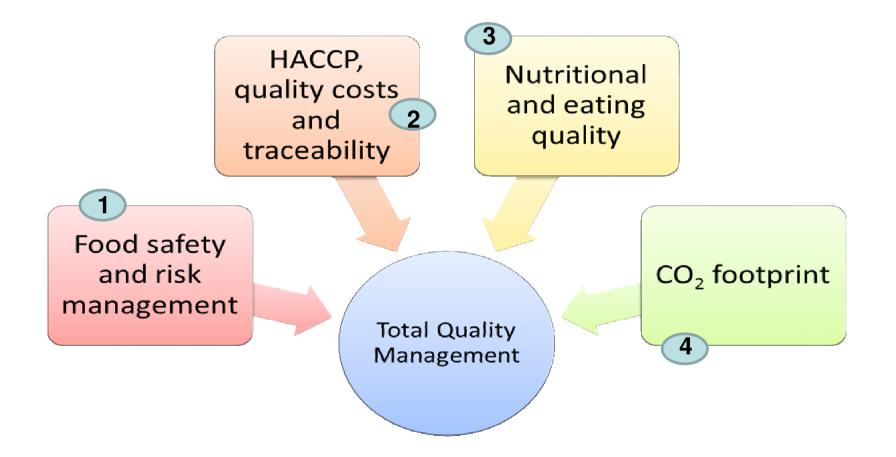
Handbook was prepared with validated methodologies for the calculation of nutritional value and eating quality

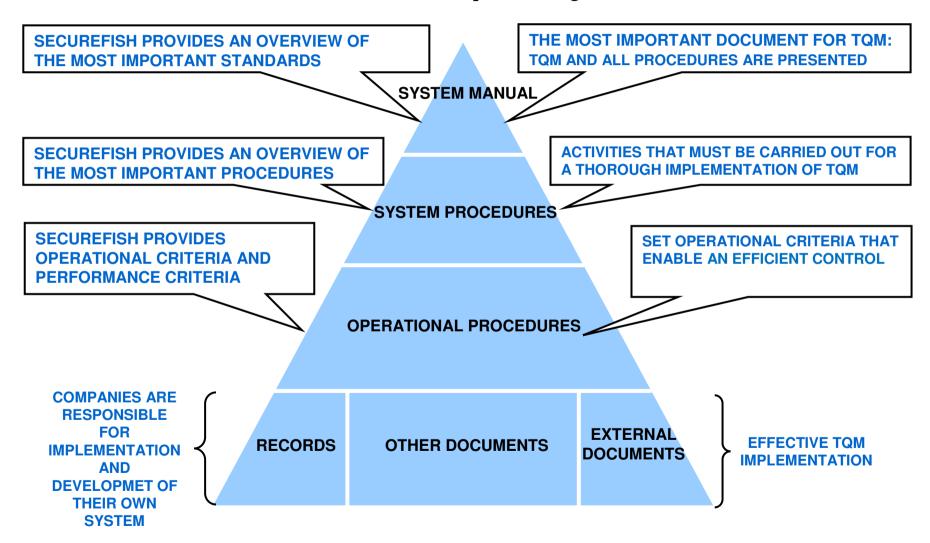
WP 4-Seafood Carbon footprint

Description of y	our supply chain				
	Enter your data				
Please provide a name for the chain you wish to model:					
Fishing / Harv	esting Method				
Choose the fishing technique and target which most closely represents those used in your chain:		~			
/ield of landed to live weight /alue between 1% and 100%:	ng at sea)				
/ield of final processed form to landed weight /alue between 1% and 100%:	%				
Are the co-products from processing used in any other product?	○ Yes● No		Т	ransport	
		Which length unit are y	you using ?	 Km Miles 	
		How far does your product travel pre-processing by:			
http://www.seafish.c	ora/GHGE	Long Haul Flight (over 4 hours)		Km	
missionsProfiler/v1/	-	Short Haul Flight (unde	er 4 hours)	Km	
		Truck transport		Km	
		Select type of truck		 Delivery Van (3.6 tonne) Lorry (16 tonne) Tractor Trailer units 	
		Ship		Km	
		How far does your p	roduct travel post-processing	g by:	
		Long Haul Flight (over	4 hours)	Km	
	Short Haul Flight (unde	er 4 hours)	Km		
		Truck transport		Km	
		Select type of truck		 Delivery Van (3.6 tonne) Lorry (16 tonne) Tractor Trailer units 	
		Shin		Km	



WP 4-Seafood Carbon footprint


Pre-processing refrigeration					
Was the fish frozen upon landing prior to be transported to processing?	Yes● No				
Total days refrigerated on fishing boat:	days				
Duration of outbound refrigerated container transport:	days				
Duration refrigerated storage pre processing:	days				
Post-processir	ng refrigeration				
Was the product frozen after processing?	Yes● No				
Duration refrigerated storage post processing:	days				
Duration of inbound refrigerated container transport:	days				
Duration of refrigerated tractor trailer truck transport:	days				
Duration of refrigerated delivery van transport:	days				
Duration of final product refrigerated storage:	days				
Calc	sulate				


WP 4- CO2 footprint CAFD

The multi-layers in a TQM company

Legal demands are basic

		EU	Export	Urban	Local
Management	Quality Management / ISO 9001:2008				
Food Safety	HACCP / ISO 22000				
Food Safety	Traceability / ISO 22000				
Social	Social Responsibility / ISO 26000				
Consumer	Labelling / Nutritional Values				
Consumer	Labelling . Nutritional Values EU				
Environment	Environmental Management / ISO 4001				
Environment	Simplification of ISO 14001: CO2				
	footprint				
Social	Health and Safety / ISO 14001				
Environment	Sustainable sourcing (private labelling)				
Ontional					

Optional

Mandatory

Thanks for your attention