

towards an integrated coastal intelligence solution

AI for metropolitan scale urban climate: an approach for predicting sub-kilometric near-surface air temperature

Numerical Weather Prediction in Portugal 2021: Surface-Atmosphere Interactions

11-12 November 2021

+ AGENDA

- Motivation

- Coast.SENSE Concept
- ---- +ATLANTIC Machine Learning Downscaling Model
 - Data and Methodology
 - ---- Results

+ MOTIVATION

In the context of the societal challenges

CLIMATE CHANGE

EXTREME EVENTS

PLANETARY HEALTH

Photo by Leonid Danilov from Pexels

Photo by Leonid Danilov from Pexels

Photo by Leonid Danilov from Pexels

Out of sight, out of mind?

Photo by <u>Aleksandar Pasaric</u> from <u>Pexels</u>

MAG 214

Out of sight, out of mind?

Yes, in our backyard!

*Source: Wei et al. (2020) Self-preservation strategy for approaching global warming targets in the post-Paris Agreement era, nature communications, 11, 1624(2020)

Photo by Kelly Lácy from Pexels

OT

1 1

+ Coast.SENSE Concept

Towards an integrated coastal intelligence solution

Coast.SENSE aims to deliver **multidisciplinary** environmental data (Earth Systems approach) rendered into user friendly **local impact assessment** information.

- Real-time, Short-term Forecast, Long-term Scenarios
- Accuracy Assessment
- High Spatio-temporal Resolution (sub-km, hourly)
- Remote Sensing Imagery Processing
- Citizen Science Workflows
- Machine Learning/Artificial Intelligence
- Deterministic Numerical Models

Coast.SEA

- Overtopping
- Water quality
- Sedimentation

Coast.AIR

- Air quality
- Air Temperature/Heatwave
 Exposure
- CO₂ fluxes

Impacts of extreme weather and climate related events in the EEA member countries and the UK (1980-2019) 1

+ Coast.SENSE Concept

Towards an integrated coastal intelligence solution

<complex-block>

New official data in Europe exposes heatwaves as still the 'silent killer' of the elderly

« Go to news archive

European summer heatwaves the most lethal disaster of 2019, says international research group

News and Press Release • Source: Red Cross Red Crescent Climate Centre • Posted: 5 May 2020 • Originally published: 5 May 2020
View original 2

Air Temperature/Heatwave Exposure Module

Air Temperature/Heatwave Exposure Module

In-situ stations:

Integrated Surface Database (ISD) Cascais Municipality Citizen Stations: existing

2 4 km

0

4 km

0

Air Temperature/Heatwave Exposure Module

In-situ stations:

Integrated Surface Database (ISD) Cascais Municipality Citizen Stations: existing Citizen Stations: QA

Air Temperature/Heatwave Exposure Module

Equation:	$T_{t,x} = R_{t,x} + L_{t,x} + U_{t,x}$
Where:	$T_{t,x}$ near-surface air temperature, in time t and place x
	$R_{t,x}$ is the regional weather contribution
	$L_{t,x}$ is the natural landscape contribution
	$U_{t,x}$ is the urban/artificial land cover contribution
(Lowry, 1977).	

Equation:	$T_{t,x} = R_{t,x} + L_{t,x} + U_{t,x}$
Where:	$T_{t,x}$ near-surface air temperature, in time t and place x
	$R_{t,x}$ is the regional weather contribution
	$L_{t,x}$ is the natural landscape contribution
	$U_{t,x}$ is the urban/artificial land cover contribution
(Lowry, 1977).	
Response Variable	= In-situ observations, after quality control, i.e., Netatmo + NCDC + Municipal
Networks (e.g., Ca	scais, Lisbon)

Equation: $T_{t,x} = R_{t,x} + L_{t,x} + U_{t,x}$ Where: $T_{t,x}$ near-surface air temperature, in time t and place x $R_{t,x}$ is the regional weather contribution $L_{t,x}$ is the natural landscape contribution $U_{t,x}$ is the urban/artificial land cover contribution (Lowry, 1977).Response Variable = In-situ observations, after quality control, i.e., Netatmo + NCDC + Municipal obsT2m obsProvide the provide the provided of the provi				
Where: $T_{t,x}$ near-surface air temperature, in time t and place x $R_{t,x}$ is the regional weather contribution $L_{t,x}$ is the natural landscape contribution $U_{t,x}$ is the urban/artificial land cover contribution (Lowry, 1977). Response Variable = In-situ observations, after quality control, i.e., Netatmo + NCDC + Municipal Networks (e.g., Cascais, Lisboa) 90%	Equation:	$T_{t,x} = R_{t,x} + L_{t,x} + U_{t,x}$		
Regional Weather Contribution = ABOME (T2m, Ws, Wdir, MSLP, RH)	Where:	$T_{t,x}$ near-surface air temperature, in time t and place x		
L _{t,x} is the natural landscape contribution U _{t,x} is the urban/artificial land cover contribution (Lowry, 1977). Response Variable = In-situ observations, after quality control, i.e., Netatmo + NCDC + Municipal Networks (e.g., Cascais, Lisboa)		$R_{t,x}^{\prime}$ is the regional weather contribution		
U _{t,x} is the urban/artificial land cover contribution (Lowry, 1977). Response Variable = In-situ observations, after quality control, i.e., Netatmo + NCDC + Municipal Networks (e.g., Cascais, Lisboa)		$L_{t,x}$ is the natural landscape contribution		
(Lowry, 1977). Response Variable = In-situ observations, after quality control, i.e., Netatmo + NCDC + Municipal Networks (e.g., Cascais, Lisboa) Regional Weather Contribution = ABOME (T2m, Ws, Wdir, MSLP, RH)		$U_{t,x}$ is the urban/artificial land cover contribution		
Response Variable = In-situ observations, after quality control, i.e., Netatmo + NCDC + Municipal T2m obs Networks (e.g., Cascais, Lisboa)	(Lowry, 1977).			
Regional Weather Contribution = AROME (T2m, Ws, Wdir, MSLP, RH)	Response Variable	e = In-situ observations, after quality control, i.e., Netatmo + NCDC + Municipal	T2m	
★ Regional Weather Contribution = ABOME (T2m, Ws, Wdir, MSLP, RH)		ascais, Lisuuaj		
$= \frac{1}{1} $	 Regional Weather 	r Contribution = AROME (T2m, Ws, Wdir, MSLP, RH)	90%	

Air Temperature/Heatwave Exposure Module – Data and Methodology

Equation:	$T_{t,x} = R_{t,x} + L_{t,x} + U_{t,x}$		
Where:	$T_{t,x}$ near-surface air temperature, in time t and place x		
	$R_{t,x}$ is the regional weather contribution		
	$L_{t,x}$ is the natural landscape contribution		
	$U_{t,x}$ is the urban/artificial land cover contribution		
(Lowry, 1977).			
Response Variab	le = In-situ observations, after quality control, i.e., Netatmo + NCDC + Municipal	T2m	
Networks (e.g., C	Cascais, Lisboa)	obs	
 Regional Weather 	ional Weather Contribution = AROME (T2m, Ws, Wdir, MSLP, RH)		
		LJ	Carley Berede
Natural Landscap prevailing winds	atural Landscape Contribution = Latitude, Longitude, Altitude, Topographic Exposure to revailing winds (regarding AROMEs Wdir) and coastal breezes		

2 4 km

$L_{t,x} + U_{t,x}$		
e air temperature, in time t ar	nd place x	
nal weather contribution		
al landscape contribution		
n/artificial land cover contribu	tion	
after quality control, i.e., Netatmo + NC	DC + Municipal T2m obs	
(T2m, Ws, Wdir, MSLP, RH)	90% T2m	
e, Longitude, Altitude, Topographic Expc [.]) and coastal breezes	osure to	
- Imperviousness % Bowen-ratio % Tre	a coverage %	
	$L_{t,x}$ + $U_{t,x}$ e air temperature, in time t ar nal weather contribution al landscape contribution n/artificial land cover contribu after quality control, i.e., Netatmo + NC (T2m, Ws, Wdir, MSLP, RH) e, Longitude, Altitude, Topographic Expo	$L_{t,x} + U_{t,x}$ e air temperature, in time <i>t</i> and place <i>x</i> nal weather contribution al landscape contribution n/artificial land cover contribution (T2m, Ws, Wdir, MSLP, RH) (T2m, Ws, Wdir, MSLP, RH) (T2m, Vs, Wdir, MSLP, RH) (10% T2m (10% T2m (T2m) (T

Air Temperature/Heatwave Exposure Module

Air Temperature/Heatwave Exposure Module – AROME Model

AROME T2m forecast versus Observed Air Temperature (citizen's in situ stations)

Air Temperature/Heatwave Exposure Module - +ATLANTIC ML Model

+ATLANTIC ML downscaling model versus Observed Air Temperature (citizen's in situ stations)

Air Temperature/Heatwave Exposure Module – AROME verus + ATLANTIC Model

Example in Lisbon, during a heatwave day 17th of July 2020, at 6p.m.

In-situ stations:

1

0

Integrated Surface Database
(ISD)5001Citizen Stations: existing
Citizen Stations: QA

Example in Lisbon, during a heatwave day 17th of July 2020, at 6p.m.

......

1 1 1 1

0

UTS daily cyle, Stage 5: Late Afternoon Peak UHI intensity (from 6 to 8p.m.)

UTS daily cyle, Stage 5: Late Afternoon Peak UHI intensity (from 6 to 8p.m.)

RCP8.5, 1981-2100, Current Urban Development Scenario RCP8.5, 19 (Tr: 32°C, Trdif_lag2h: 3.5°C) RCP8.5, 19

(from 6 to 8p.m.) RCP8.5, 1981-2100, Urban Densification Scenario (Tr: 32°C, Trdif_lag2h: 3.5°C)

RCP8.5, 1981-2100, Ta Diference between Current Urban Development and Densification Scenario

+ Coast.SENSE

Towards an integrated coastal intelligence solution

Going Forward

- Assessing Ecosystems Services and Health
 - Habitats' vulnerability to extreme heat and wildfires
 - Vegetation as an urban acclimatization tool
- Evaluate the role of the Atlantic proximity
 - Land and sea breezes
 - Atmosphere and ocean interactions
- Investigate Climate Change Trends and Scenarios
 - Historical changes in the atmospheric, coastal and biological domains
 - Scenarios of climate changed induced impacts

Coast.SEA

- Overtopping
- Water quality
- Sedimentation

<u>Coast.AIR</u>

- Air quality
- Air Temperature/Heat Exposure
- CO₂ fluxes

COLAB +ATLANTIC

> colabatlantic.com info@colabatlantic.com

FOLLOW US! LinkedIn & Twitter: @colabatlantic

+ATLANTIC ALENTEJO

Edifício TEKEVER Aeródromo Municipal Ponte de Sor 7400-601 Tramaga, Portugal

+ATLANTIC CENTRO

Molhe Leste 2520-620 Peniche, Portugal

+ATLANTIC NORTE

Av. D. Afonso Henriques 1825 4450-017 Matosinhos, Portugal

+ATLANTIC LVT

Edifício LACS Estrada da Malveira da Serra 920 2750-834 Cascais, Portugal