

Workshop: Numerical Weather Prediction in Portugal 2021

IMPROVEMENT OF MESO-NH SOLAR RADIATION SIMULATIONS WITH ARTIFICIAL NEURAL NETWORKS

Pereira, S., Abreu E., Iakunin, M., Cavaco, A., Canhoto, P. and Salgado, R.

INTRODUCTION

- Renewable energy has been and is still growing, including photovoltaic (PV) energy.
- Being able to do an accurate assessment of solar radiation allows for better planning and design of PV systems.
- Since generation of energy maps using observations require various instruments dispersed throughout the desired domain, numeric weather prediction (NWP) models can be used.
- NWP models have some difficulties in correctly simulating solar radiation, mainly direct normal irradiation (DNI).

SIMULATION DATA

• Generation of Typical Meteorological Year (TMY) based on 16-year observation data at Évora;

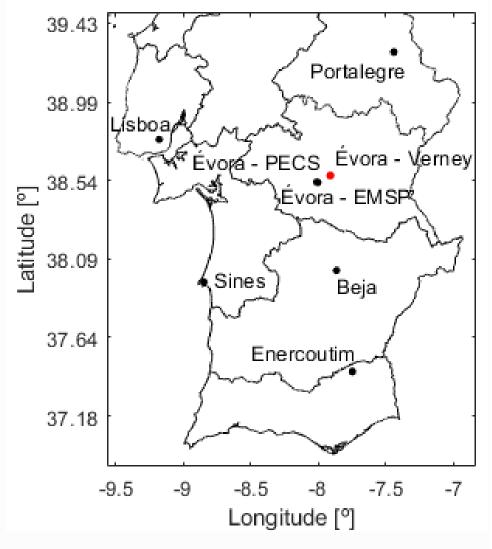
 Selected years/morths

 Jan.
 Feb.
 Mar.
 May
 Jun.
 Jul.
 Aug.
 Sep.
 Oct.
 Nov.
 Dec.

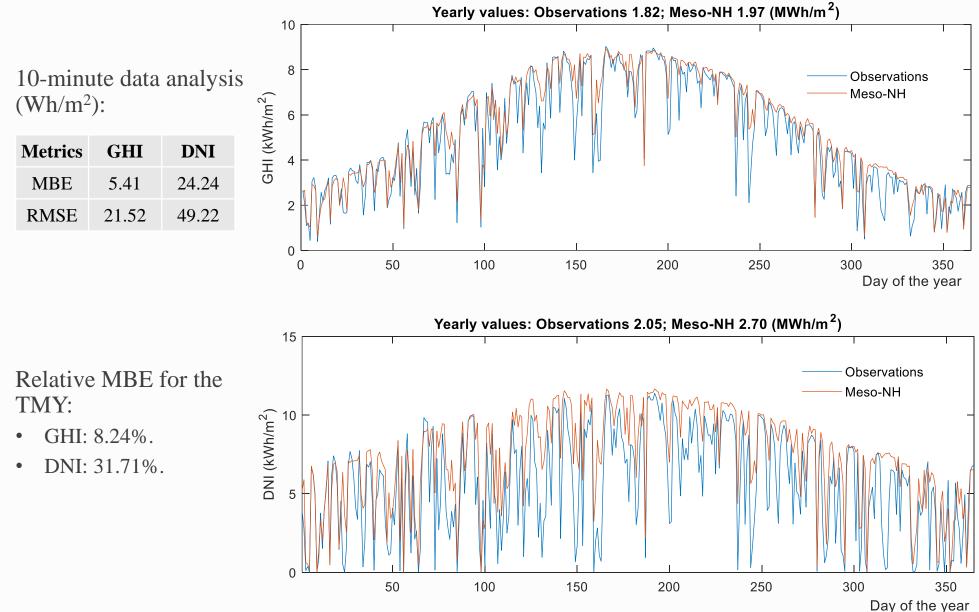
 2018
 2006
 2017
 2008
 2005
 2010
 2014
 2007
 2011
 2008
 2018

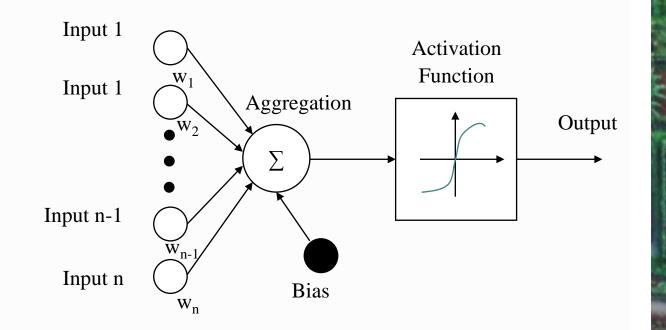
- Simulation of TMY for the South of Portugal using Meso-NH model. Some important details:
 - 72h simulations initiated and forced with analysis data from ECMWF model.
 - 1.25 km of horizontal resolution.
 - Radiation scheme ecRad (v 1.0.1).
 - Spartacus solver.
 - Aerosol climatology: MACC (12 aerosols species).
- Obtained 1-minute data converted to 10-minute values of the variables:
 - Global Horizontal Irradiance (GHI).
 - Direct Normal Irradiance (DNI).
 - Diffuse Horizontal irradiance (DHI).
 - Air Temperature (T).

- Wind Speed (WS).
- Wind Direction (WD).
- Average Cloud Fraction (avgCF).
- Maximum Cloud Fraction (maxCF).



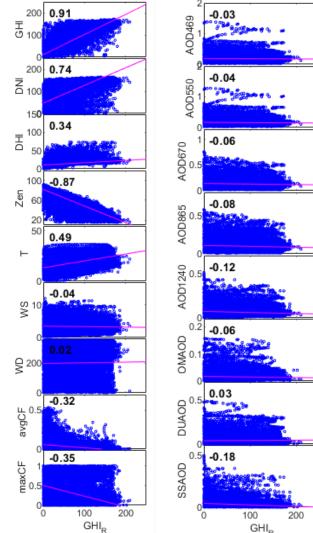
EXPERIMENTAL DATA

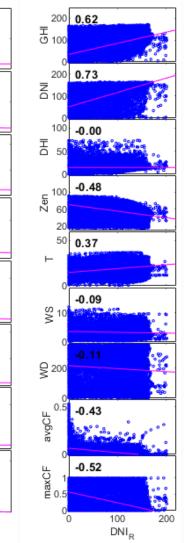

- At Évora Verney:
 - Before 2017:
 - 10min time-step experimental data of GHI and DHI.
 - Computation of DNI from observations of GHI and DHI.
 - 2017 and 2018:
 - 1min time-step experimental data of GHI, DNI and DHI from the sunTracker.

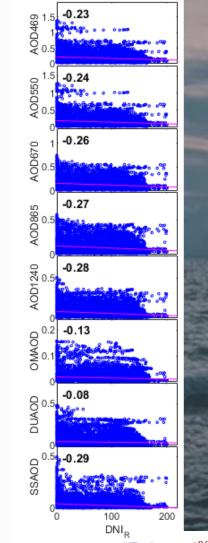

ANALYSIS OF MESO-NH OUTPUT (ÉVORA)

•

ANN Default Parameters


- Architecture: fitting network with 3 layers.
- Activation Function: hyperbolic tangent sigmoid.
- Performance Function: mean squared error.
- Data division: randomly into 70% for training and 30% for validation.





Selection of Inputs

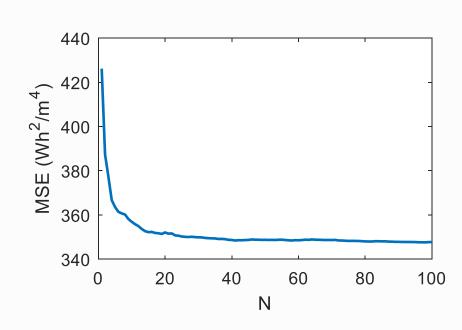
- Introducing the CAMS analysis data set:
 - Spatial resolution: 0.125°.
 - Temporal resolution: 3h.
 - Variables tested:
 - Aerosol optical depth at 469 nm (AOD469),
 550 nm (AOD550),
 670 nm (AOD670),
 865 nm (AOD865) and
 1240 nm (AOD1240).
 - Sea salt aerosol optical depth at 550 nm (SSAOD).
 - Organic matter aerosol optical depth at 550 nm (OMAOD).
 - Dust aerosol optical depth at 550 nm (DUAOD).

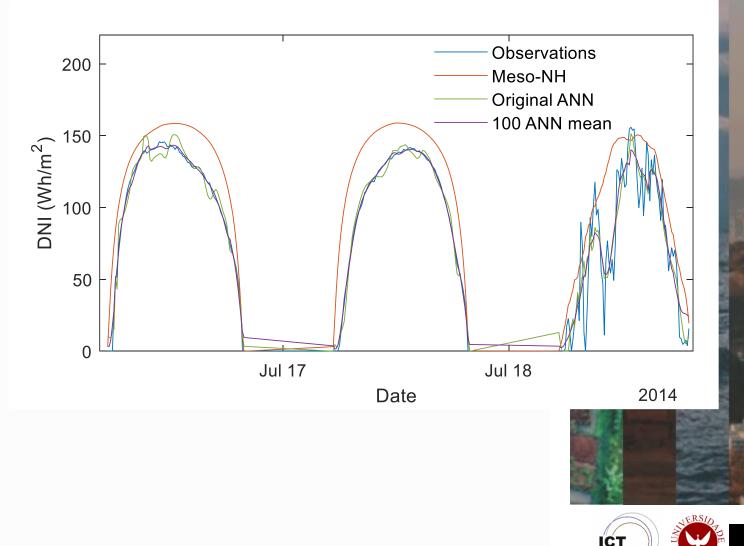
Numerical Weather Prediction in Portugal 2021

Testing ANN models

• Metric:

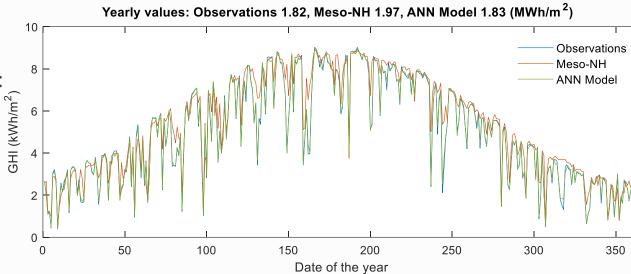
$$MSE_{rd} = \frac{MSE_{Meso-NH} - MSE_{ANN}}{MSE_{Meso-NH}} \times 100\%$$


- Training Function:
 - Levenberg-Marquardt backpropagation.
 - Bayesian regularization backpropagation.
- Number of Neurons in the Hidden Layer: from 1 to 100.
- Addition of inputs in order of their Pearson's linear correlation coefficients.

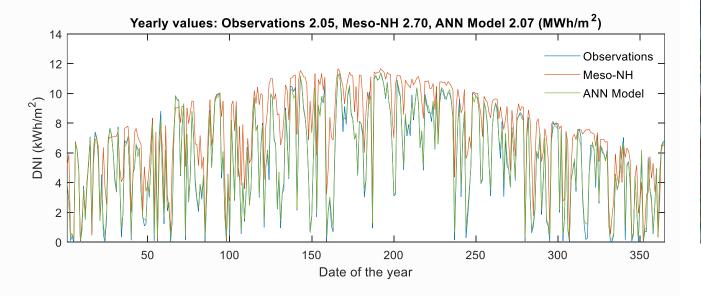

Variable	e of interest			GHI					DNI		
ANN m	nodel rank	1	2	3	4	5	1	2	3	4	5
MSI	E _{rd} (%)	67.60	67.07	66.95	66.92	66.83	82.41	82.34	82.28	82.24	81.89
Number	of neurons	100	99	95	97	98	97	99	100	98	96
	GHI	×	×	×	×	×	×	×	×	×	×
	DNI	×	×	×	×	×	×	×	×	×	×
	DHI	×	×	×	×	×	×	×	×	×	×
	Zen	×	×	×	×	×	×	×	×	×	×
	Т	×	×	×	×	×	×	×	×	×	×
	WS	×	×	×	×	×	×	×	×	×	×
	WD	×	×	×	×	×	×	×	×	×	×
	avgCF	×	×	×	×	×	×	×	×	×	×
Inputs	maxCF	×	×	×	×	×	×	×	×	×	×
	AOD469	×	×	×			×	×			×
	AOD550	×	×	×	×	×	×	×	×	×	×
	AOD670	×	×	×	×	×	×	×	×	×	×
	AOD865	×	×	×	×	×	×	×	×	×	×
	AOD1240	×	×	×	×	×	×	×	×	×	×
	OMAOD	×	×	×	×	×	×	×	×	×	×
	DUAOD	×	×	×	×	×	×	×	×	×	×
	SSAOD	×	×	×	×	×	×	×	×	×	×

Testing ANN models

- Increase in performance (MSE_{rd}) when using the mean of 100 trained ANNs:
 - GHI: 4.76%
 - DNI: 3.24%



RESULTS


• 10-minute data analysis (Wh/m²): $\sqrt{2}$

Metrics	GHI	[DNI		
Metrics	Meso-NH	ANN	Meso-NH	ANN	
MBE	5.41	0.13	24.24	0.88	
RMSE	21.52	11.32	49.22	18.65	

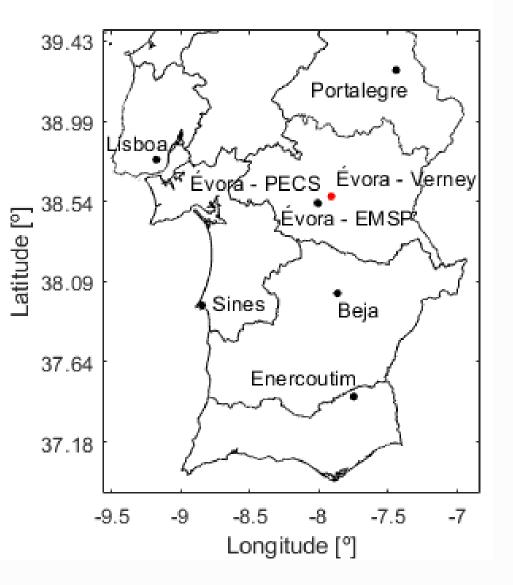
• Relative MBE for the TMY:

GH	I	DNI			
Meso-NH	ANN	Meso-NH	ANN		
8.24%	0.55%	31.71%	0.98%		

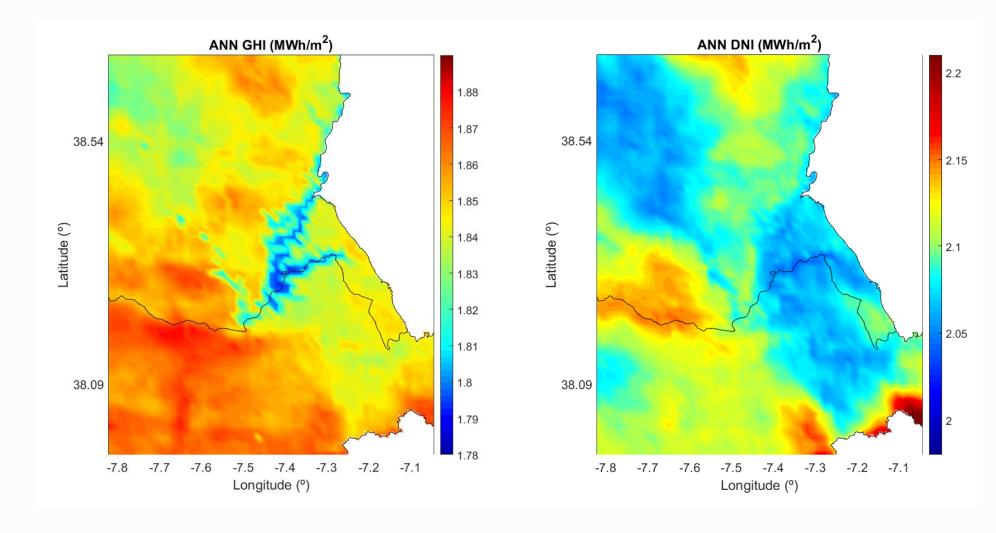
Numerical Weather Prediction in Portugal 2021

10

IC


RESULTS

- GHI and DNI data from stations of the DNI-A network.
- Monthly data analysis (kWh/m²):


Metrics	GHI		DNI		
Metrics	Meso-NH	ANN	Meso-NH	ANN	
MBE	9.63	2.63	43.67	5.97	
RMSE	11.49	4.26	48.00	11.57	

• Relative MBE for the available data:

GH	[DNI			
Meso-NH	ANN	Meso-NH	ANN		
8.50%	2.34%	29.54%	3.41%		

RESULTS

Numerical Weather Prediction in Portugal 2021

12

CONCLUSIONS

- The Meso-NH model shows overestimation of solar radiation probably due to poor cloud simulation and use of monthly-mean aerosol climatologies.
- GHI is better simulated by the Meso-NH model than DNI.
- The corrective algorithm dramatically improves not only the simulations of solar radiation for the station of Évora-Verney but also for the surrounding region.
- An accurate solar resource assessment is essential for applications related to the solar resource and, ultimately, for planning and design of photovoltaic energy systems.

THANK YOU!

